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Abstract

Synthetic data generation is an important tool to ensure data confidentiality. Various
synthetic data generators have been developed in the literature. The methods in the
literature are mostly for general purposes. They aim to generate data whose distribu-
tions are the same as the original data set, and the synthesized data are used for every
purpose depending on who uses them. However, it could not be good for all purposes.
In this paper, we study the synthetic data generation tailored for a specific purpose.
We are particularly interested in covariance matrix estimation, which is a key part of
many multivariate statistical analyses. To do it, we first see the connection between the
sequential regression model and the modified Cholesky decomposition. We then devise
a new synthetic data generator, named SynCov, that controls the error variances of the
sequential regression model. We show that SynCov results in a shrinkage (synthesized)
covariance matrix estimator. We numerically show that our SynCov performs better
than other synthetic data generation methods in covariance matrix estimation. Finally,
we apply our SynCov to two real data examples, (i) the estimation of the covariance
matrix of the (selected) variables of the Los Angeles City Employee Payroll data and
(ii) the classification of the Taiwanese Bankruptcy Data.

Keyword: Covariance matrix estimation, data confidentiality, sequential regression mul-
tiple imputation, shrinkage estimator, synthetic data generator, disclosure risk of syn-
thetic data

1 Introduction

The concept of generating synthetic data for statistical disclosure control was first introduced

by Rubin (1993) based on the multiple imputation method, where the synthetic data is

generated from the joint distribution estimated from the original data. The advantage of
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synthetic data generation lies in the absence of original samples in the released synthetic

dataset. Due to this advantage, synthetic data generation is often considered a risk-free

method for data confidentiality (Walonoski et al., 2018). If the original dataset consists

solely of categorical variables, the synthetic data set can have identical records to those in

the original dataset and thus is not free of disclosure risk (Taub and Elliot, 2019; Taub

et al., 2018). However, if the original data contains continuous variables only, theoretically,

the synthetic data could not have the same values as the original, although the synthesized

dataset can potentially contain data points that are close to those in the original (Smith

et al., 2023). In this paper, we are interested in generating synthetic data of continuous

variables.

Suppose we have n samples of p−dimensional random variables x = (X1,X2, . . . ,Xp)⊺.
A typical synthetic data generator has two steps. In the first step, we estimate the p-

dimensional distribution P (X1,X2, . . . ,Xp) from the original data and, then, we generate

synthetic samples from the estimated distribution. However, we all know that the estimation

of a p-dimensional distribution is a formidable task, even when p is not large. To circumvent

the difficulty, we decompose P (X1,X2, . . . ,Xp) into

P (X1)
n

∏
j=2
P (Xj ∣Xj−1, . . . ,X1), (1)

and sequentially estimate the conditional distributions, and generate synthetic samples from

them. In doing these sequential estimations and generations, to make the problem simple,

we assume a regression model as, for j = 2,3, . . . , p,

Xj = fj(Xj−1, . . . ,X1) + ϵj, (2)

where ϵj are independently distributed as (0, σ2
j ) and fj(Xj−1, . . . ,X1) are regression func-

tions. The conditional mean fj(Xj−1, . . . ,X1) in (2) is either modelled with a parametric

function (e.g. linear regression function) or a non-parametric function (e.g. the classification

and regression tree (CART) proposed by Breiman et al. (1984)).

The synthetic data generation methods until now are mostly for a general purpose. To

be specific, it aims to generate a data set whose distribution is that of the original data, but

does not consider the following use of the synthesized data. The synthesized data are used

for various purposes depending on the users including regression, classification, clustering,

and the estimation of quantiles depending on the users. However, it could not be good for

all purposes.

In this paper, we study the method to generate a synthetic dataset that is tailored for

a specific purpose. We are particularly interested in covariance matrix estimation which is
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a key part of many multivariate statistical analyses. To do it, we first see the connection

between the sequential regression model in (2) and the modified Cholesky decomposition

by Pourahmadi (1999). We then devise a new synthetic data generator named SynCov that

controls the error variances in (2) and results in a shrinkage synthetized covariance matrix

estimator. We propose the optimal control level of the error variance under the Gaussian

assumption that theoretically minimizes the mean squared error (MSE, equivalently, the

Frobenius risk) of the covariance matrix estimation following the idea of Chen et al. (2010).

The remainder of this paper is organized as follows. In Section 2, we introduce some

preliminary results - the sequential regression model and the modified Cholesky decomposi-

tion, - to elucidate our new proposal. In Section 3, we introduce a synthetic data generation

method that controls error variances to enhance covariance matrix estimation in terms of

the MSE. In Section 4, we numerically compare our SynCov to other synthetic data gener-

ation methods in covariance matrix estimation. In Section 5, we apply our SynCov to two

data examples, (i) the estimation of the covariance matrix of the (selected) variables of the

Los Angeles City Employee Payroll data, (ii) the classification of the Taiwanese Bankruptcy

Data. Finally, in Section 6, we conclude our study with a summary and some remarks.

2 Preliminaries

2.1 Modified Cholesky Decomposition

In this section, we briefly introduce the modified Cholesky decomposition proposed by

Pourahmadi (1999), which bridges the sequential regression models to the covariance estima-

tion. To be specific, let Y = (Y1, . . . , Yp)⊺ be a random vector from a multivariate distribution

with covariance matrix Σ. Without loss of generality, we suppose that the random vector

Y is centered (i.e., E(Y) = 0). We consider the following sequential regression model for a

given order of (1,2, . . . , p),

Y1 = ϵ1, Yt =
t−1
∑
j=1
ψtjYj + ϵt, t = 2, . . . , p, (3)

where ϵts are independent random errors with mean 0 and variance σ2
t . With the matrix and

vector notations, the sequential regression model (3) can be represented as

ΨY =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 ⋯ 0 0
−ψ21 1 0 ⋯ 0 0
−ψ31 −ψ32 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
−ψp1 −ψp2 −ψp3 ⋯ −ψp(p−1) 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

Y1
Y2
Y3
⋮
Yp

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

ϵ1
ϵ2
ϵ3
⋮
ϵp

⎞
⎟⎟⎟⎟⎟⎟
⎠

= ϵ. (4)
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Further, Pourahmadi (1999) considers the following matrix decomposition of the covariance

matrix:

ΨΣΨ⊺ =D and Σ =Ψ−1D(Ψ⊺)−1 = LDL⊺, (5)

where D = diag(σ2
1, . . . , σ

2
p) and L =Ψ−1. Since the matrix L is a unit lower triangular matrix

and Σ = L̃L̃⊺, this matrix decomposition is called the modified Cholesky decomposition

(MCD) of the covariance matrix Σ, where L̃ = LD1/2 and D1/2 = diag(σ1, . . . , σp). Moreover,

the inverse of the covariance matrix can be represented with Ψ and D directly as Ω = Σ−1 =
Ψ⊺D−1Ψ.

This relationship between the sequential regression model and the covariance matrix via

MCD introduces a new way to estimate the covariance matrix Σ and its inverse Ω (a.k.a. the

precision matrix). In particular, the covariance estimation by the modified Cholesky factor

provides both a positive definite covariance estimator and a regression interpretation of the

relationships between covariates. Based on these advantages, Huang et al. (2006) propose

the covariance estimator based on the penalized normal likelihood function with the MCD.

Additionally, Rothman et al. (2010) consider the banded Cholesky factor of the MCD for

the covariance estimation. Rajaratnam and Salzman (2013) study the order of covariates for

the banded covariance matrix estimation through the MCD as well. More recently, MCD

has been utilized to enhance the estimation of both covariance and precision matrices by

permuting covariate orders, as demonstrated in Kang and Deng (2020), Kang et al. (2020a),

and Kang et al. (2020b), where the MCD representation with permutation is employed as

the ensemble procedure.

2.2 Synthetic Data Generation via Sequential Regression

In this section, we introduce a synthetic data generation approach based on sequential re-

gression, which is the base of our approach. The synthetic data generation through se-

quential regression originates from the sequential regression multiple imputation (SRMI)

approach (Raghunathan et al., 2001) within the context of missing data imputation. To be

specific, let X = (x1,x2, . . . ,xd) be an n × d dimensional matrix of fully observed variables

and Y = (y1,y2, . . . ,yp) be an n×p dimensional matrix of partially observed variables, where

the columns of Y are ordered by the amount of missing values from least to most. The SRMI

approach considers the following regression models for partially observed variables given the

fully observed variables:

Y1 = f1(X) + ϵ1, Yj = fj(Yj−1, . . . , Y1,X) + ϵj for j = 2,3, . . . , p, (6)
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where fj(⋅) is a regression functions of Yj. The regression functions are determined as the

type of the response variable in general. For instance, the usual choice of the regression model

for a continuous response is the linear regression model.

Motivated by the first proposal of fully synthetic data (Rubin, 1993), the SRMI is em-

ployed to generate synthetic data in Raghunathan et al. (2003). Synthetic data generation

via SRMI consists of two steps. In the first step, we fit the regression models in (6) with a

given order. Let f̂j(⋅) be the estimated regression function of Yj. Then, the synthetic data is

generated by the following equations with a given order (j1, j2, . . . , jp):

Y ∗j1 = f̂j1(X) + ϵ̃j1 , Y ∗jk = f̂jk(Y
∗
jk−1, . . . , Y

∗
j1 ,X) + ϵ̃jk for k = 2,3, . . . , p, (7)

where ϵ̃jk is randomly drawn from a distribution with mean 0 and variance σ̂2
jk
and σ̂2

jk
is the

estimated variance from the model in (6). Besides fully synthetic data, the partially synthetic

data generation (Little, 1993) considers replacing sensitive original observations that pose a

high disclosure risk with the synthesized samples. For further details, refer to Reiter (2005a)

and Reiter and Raghunathan (2007) for fully synthetic data, and to Reiter (2003), Reiter

(2005b), and Drechsler and Reiter (2011) for partially synthetic data.

There are several available software packages for statistical synthetic data generation

methods. Among them, the R package synthpop, implemented by Nowok et al. (2016), pro-

vides various parametric and nonparametric regression functions in the sequential regression

models. For example, synthpop provides the ordinary linear regression, logistic regression,

polynomial regression for parametric functions and classification and regression tree and

random forest (Breiman, 2001; Breiman et al., 1984) for nonparametric functions.

Besides statistical methods for synthetic data generation, various techniques based on

artificial neural networks have been proposed in recent years. Some examples are variational

autoencoder-based models by Tomczak and Welling (2017) and Ma et al. (2020) and gen-

erative adversarial network-based models by Park et al. (2018), Xu et al. (2019), and Zhao

et al. (2021). However, in this study, we specifically concentrate on the sequential regression

model, which serves as our primary generation framework.

3 New synthetic data generator for covariance matrix

estimation - SynCov

In this section, we establish a connection between the synthetic generation method using

the sequential regression model and the minimum MSE covariance estimation, which is
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achieved by controlling error variances in the sequential regression model. Specifically, let

Y = (Y1, . . . , Yp)⊺ be a random vector from a multivariate distribution with a covariance

matrix Σ. As described in Section 2.2, we assume that the random vector Y is centered

without loss of generality. In this study, we describe our proposed method for fully synthetic

data generation when all the variables in the original dataset are continuous. It is worth

noting that our method is versatile and can also be applied to generate partially synthetic

data by considering the conditional distribution of Y given X, where X may consist of either

categorical or continuous variables.

Recall the sequential regression model in (3):

Y1 = ϵ1, Yt =
t−1
∑
j=1
ψtjYj + ϵt, t = 2, . . . , p,

where ϵ1, ϵ2, . . . , ϵp are independent errors with variances (σ2
t )
p

t=1. The error variances can be

expressed as the following conditional variances for t = 2, . . . , p:

σ2
t = Var(ϵt) = Var(Yt∣Y[1∶(t−1)]),

where Y[a∶b] = (Ya, Ya+1, . . . , Yb) for a ≤ b. In general, the synthetic data generation via the

sequential regression models consists of the following two steps:

(Step 1) Parameter estimation step: for t = 2, . . . , p,

(ψ̂t1, . . . , ψ̂t(t−1))
⊺ = argmin

ψt1,...,ψt(t−1)

n

∑
i=1
(Yit −

t−1
∑
j=1
ψtjYij)

2

, (8)

where Yij is the i-th observation for the j-th variable in the original data.

(Step 2) Synthetic data generation: for i = 1, . . . ,m,

Yi1 is drawn from the estimated distribution of Y1

Yit =
t−1
∑
j=1
ψ̂tjYij + ϵit, for t = 2, . . . , p, (9)

where m is a sample size of the synthetic data, Yij is the i-th synthesized sample for the

j-th variable, and ϵit is the i-th random sample from the estimated error distribution

of ϵt.

In this study, we consider the modified sequential regression model for the synthetic data

generation in Step 2 as follows:

Ỹ1 = ηϵ̃1, Ỹt =
t−1
∑
j=1
ψtjỸj + ηϵ̃t, t = 2, . . . , p, (10)
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where Ỹt denotes the t-th random variable in the synthetic generation model, and ϵ̃t represents

a random error for the t-th regression model having the same distribution with that of ϵt.

We then find the covariance matrix Σ̃η for (Ỹ1, . . . , Ỹp) is η2Σ as shown in Lemma 1, where

Σ is the covariance matrix of the original data (Y1, . . . , Yp).

Lemma 1. Let Σ be the covariance matrix of the original data (Y1, . . . , Yp) and Σ̃η be the

covariance matrix of (Ỹ1, . . . , Ỹp) in the modified sequential model (10). Then, Σ̃η can be

represented as η2Σ.

Proof. From the modified sequential regression model (10), we can represent the model with

the vector and matrix from as follows:

ΨỸ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 ⋯ 0 0
−ψ21 1 0 ⋯ 0 0
−ψ31 −ψ32 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
−ψp1 −ψp2 −ψp3 ⋯ −ψp(p−1) 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

Ỹ1
Ỹ2
Ỹ3
⋮
Ỹp

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

ηϵ̃1
ηϵ̃2
ηϵ̃3
⋮
ηϵ̃p

⎞
⎟⎟⎟⎟⎟⎟
⎠

= ηϵ̃. (11)

Hence, Σ̃η = Var(Ỹ) = η2Ψ−1Var(ϵ̃)(ΨT )−1 = η2Σ because Var(ϵ̃) = Var(ϵ) = D and Σ =
Ψ−1D(ΨT )−1 in (5).

From Lemma 1, the sample covariance matrix of the synthetic data generated from the

modified sequential regression model can be regarded as a re-scaled version of the sample

covariance matrix of the original data. We denote η as the parameter to control the error

variance. Additionally, when η = 1, the modified sequential regression model reduces to the

original sequential regression model. To select the optimal control parameter η, we consider

the following minimization problem motivated by the minimum MSE covariance estimation

in Chen et al. (2010):

min
η

E(∥̂̃Ση −Σ∥
2

F
)

s.t. ̂̃Ση = η2Sn,
(12)

where ∥A∥2F = tr(AA⊺) and Sn = 1
nY

⊺Y is the sample covariance matrix of the original data.

For η∗, the minimizer of the problem (12), ̂̃Ση∗ is the covariance matrix estimator to

minimize the Frobenius risk in (12) in the class {Σ̃η ∶ Σ̃η = η2Sn}. The optimal shrinkage

level η∗ is given in Theorem 1 below.

Theorem 1. Let Sn = 1
n ∑

n
i=1 yiy

⊺
i be the sample covariance matrix of the p-dimensional i.i.d.

random vectors {yi}ni=1 with E(yi) = 0 and Var(yi) = Σ for all i = 1,2, . . . , n. If {yi}ni=1 follow
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Gaussian distribution, then the solution to (12) is

(η∗)2 =
E{tr(SnΣ)}
E{tr(S2

n)}
= ntr(Σ2)
(n + 1)tr(Σ2) + (tr(Σ))2 . (13)

Moreover, the estimator (η∗)2Sn for Σ satisfies

E{∥(η∗)2Sn −Σ∥2F} ≤ E{∥Sn −Σ∥2F}. (14)

Proof. By plugging in the constraint form η2Sn to ̂̃Ση, we easily get the following equation

(η∗)2 = argmin
η2

E {∥̂̃Ση −Σ∥2F} subject to ̂̃Ση = η2Sn

= argmin
η2

E {tr(η2Sn −Σ)(η2Sn −Σ)⊺}

=
E{tr(SnΣ)}
E{tr(S2

n)}
.

(15)

From the Gaussian assumption and results in Chen et al. (2010) and Letac and Massam

(2004), we can express the numerator and denominator terms as

E{tr(SnΣ)} = tr(Σ2) and E{tr(S2
n)} =

n + 1
n

tr(Σ2) + 1

n
(tr(Σ))2 (16)

and so

(η∗)2 = ntr(Σ2)
(n + 1)tr(Σ2) + {tr(Σ)}2

.

In addition, the inequality (14) is trivial since (η∗)2 is the minimizer of the function f(η2) =
E{∥η2Sn −Σ∥2F}, where Sn can be considered as η2Sn with η = 1.

As described in Theorem 1, the theoretical minimizer (η∗)2 is defined with the unknown

parameter Σ. To resolve this difficulty, we can refer (16) and

E{(tr(Sn))2} = (tr(Σ))2 +
2

n
tr(Σ2)

so that (η∗)2 has another representation as

(η∗)2 =
nE{tr(S2

n)} −E[{tr(Sn)}
2]

(n + 1 − 2n−1)E{tr(S2
n)}

. (17)

Then, we propose the estimate η̂2 as

η̂2 = E((η∗)2∣Sn) =
ntr(S2

n) − {tr(Sn)}
2

(n + 1 − 2n−1)tr(S2
n)
. (18)

In summary, the proposed synthetic data generation method for enhanced minimum MSE

covariance estimation considers the following two steps after Step 1 instead of Step 2 in (9).
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(Step 2-M) Estimation of the optimal control parameter η̂2 using the equation (18).

(Step 3-M) Synthetic data generation: for i = 1, . . . ,m,

Yi1 is drawn from the estimated distribution of Y1

Yit =
t−1
∑
j=1
ψ̂tjYij + η̂ϵit, for t = 2, . . . , p, (19)

where m represents the sample size of the synthetic data, Ỹij denotes the i-th synthe-

sized sample for the j-th variable, ϵ̃it is the i-th random sample from the estimated

error distribution of ϵt, and η̂ can be either +
√
η̂2 or −

√
η̂2.

4 Numerical study

In this section, we numerically compare the performance of the proposed SynCov to other

existing sequential regression methods in estimating the covariance matrix.

For the comparison, we consider four covariance structures following Kang et al. (2020b),

which are:

(M1) Independent and unequal variances: Σ1 = diag(1,2−1, . . . , p−1)

(M2) Autoregressive structure with homogeneous variance Σ2:

(Σ2)ij = 0.5∣i−j∣ for 1 ≤ i, j ≤ p.

(M3) Linearly decreasing correalation and possibly banded covariance matrix Σ3:

(Σ3)ij =max{1 − 2∣i − j∣/p,0}

(M4) Block diagonal matrix structure with the compound symmetry and identity ma-

trix structure Σ4:

Σ4 = (
CS(0.5) 0

0 I
) and (CS(0.5))

ij
= { 1 for i = j = 1,2, . . . , [p/2]

0.5 for i ≠ j,1 ≤ i, j ≤ [p/2] .

For each model, the original data is simulated from the multivariate normal distribution

N(0,Σ) with the sample size n = 250,500 and the number of variables p = 25,50,100. For
each original data set, we generate a synthetic data set with the same size using four synthetic

methods, which are
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(1) Sequential regression (SR): the synthetic data is generated by Step 1 and Step 2 de-

scribed in Section 3.

(2) SynCov: the synthetic data is generated by Step 1, Step 2-M, and Step 3-M described

in Section 3.

(3) Sequential regression preserving the marginal distribution (SR-PMD): It is a default

option of the R package synthpop. In each stage of sequential regression, this method

transforms the response variables {Yij}ni=1 into normal quantile values {Qij}ni=1 using

the rank of Yij among {Yij}ni=1 in the original data. It regresses Qij against Yik, k =
1,2, . . . , j − 1, and generates the synthesized response value Q̂ij from the estimated

regression model. Finally, it transforms Q̂ij to Ŷij with Yik whose normal quantile

value is the closest to Q̂ij.

(4) Classification and regression tree (CART): the synthetic data is generated by the CART

model. This method fits the regression tree model by binary recursive partitioning in

each sequential regression model. In the terminal node, it randomly draws a sample Y

from the raw observations in the node and takes it as the synthetic value.

To apply the synthetic data generation models mentioned above, we use R package synthpop

with norm, normrank, and cart in the method argument for SR, SR-PMD, and CART,

respectively. We consider two performance measures of the covariance matrix estimation,

the Frobenius loss (the Frobebius norm) and the matrix ℓ2 loss (the spectral norm) of the

sample covariance matrix evaluated from the synthesized data. We replicate the simulation

of the original data and the generation of the synthetic data 1000 times, and report the

averages and standard errors of the two performance measures in Table 1.

We observe several interesting features from Table 1. First, the proposed method SynCov

outperforms SR for all cases of Models 2–4 and demonstrates similar performance for cases

of Model 1, which supports the theoretical result in Theorem 1 in Section 3. Second, our

SynCov also outperforms SR-PMD for all cases of Models 2–4. All methods exhibit simi-

lar performance in Model 1, where the variables are independent with unequal variances.

Third, SR-PMD exhibits significantly worse estimation performance than the other methods

for cases of Model 3, where the dependency of variables linearly decreases in the variable

order. This might be due to the information loss resulting from the rank transformation.

Finally, SynCov exhibits either similar or slightly worse performance than CART; CART

is a nonparametric method, while SynCov is a parametric method. We conjecture that this

10



order between SynCov and CART is the advantage of (i) the variable selection and (ii) the

resampling of the original data. In CART, important variables are chosen to construct a tree

structure, whereas SynCov includes all variables at each step in the sequential regression

model. In addition, CART (also SR-PMD) generates synthetic data by resampling the ob-

servations in the original data and thus, inevitably, all values in the synthetic data are the

values that appeared in the original data. This increases the disclosure risk of synthesized

data and contradicts the purpose of the use of synthetic data.

5 Real Data examples

In this section, we apply our SynCov and the CART method in R package synthpop to two

real data examples, LA City Employee Payroll Data and Taiwanese Bankruptcy Data. The

two methods show better performance than others in the numerical study in Section 4. In

both data sets, we aim to evaluate or compare the performances of the synthetic data not

only in the estimation of the covariance matrix but also in the subsequent multivariate analy-

sis. In the first example, we evaluate the performance in estimating the first few eigenvectors

and their principal component scores which are the basics of the principal component anal-

ysis. In the second example, we investigate the performance of the synthetic data in linear

discriminant analysis (LDA).

5.1 Application to LA City Employee Payroll Data

In this section, we apply the methods in Section 4 including our SynCov to a subset of Los An-

geles City Employee Payroll data provided by the LA City Controller’s Office. The full data

are available at https://controllerdata.lacity.org/Payroll/City-Employee-Payroll-Current-/

g9h8-fvhu/about_data, which consist of 371,455 observations of 35 variables including 21

continuous variables. We build a subset of the full data set with the inclusion/exclusion crite-

ria that are: (i) We consider only continuous variables and 21 variables are left. (ii) We only

consider the samples with no missing values. 141,993 samples are left. (iii) We exclude vari-

ables whose proportions of zero values are more than 40% and, in consequence, 6 variables

among 21 are excluded. (iv) We additionally remove the observations that have negative and

zero annual salaries. (v) We only consider two sub-populations with jobs ‘Police Officer (II,

III)’ and ‘Firefighter III’, which are the two most popular public jobs in LA. In the end,

we have two sub-datasets of ‘Police Officer (II, III)’ and ‘Firefighter III’, which have 19,684

observations and 5,728 observations, respectively. The number of variables is 14 and they
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are listed below.

Y1: Hourly or Event Rate (HER) Y2: Projected Annual Salary (PAS)
Y3: Q1 Payments (Q1P) Y4: Q2 Payments (Q2P)
Y5: Q3 Payments (Q3P) Y6: Q4 Payments (Q4P)
Y7: Payments Over Base Pay (POBP) Y9: Total Payments (TP)
Y10: Base Pay (BP) Y17: Other Pay Payroll Explorer (OPPE)
Y18: Average Health Cost (AHC) Y19: Average Dental Cost (ADC)
Y20: Average Basic Life (ABL) Y21: Average Benefit Cost (ABC)

In each sub-dataset, we randomly select 1,000 samples and treat them as testing data.

We use the remaining samples as training data to estimate the sequential regression models.

To understand better the performance in estimating the covariance matrix, we consider the

detailed measures as:

• the Frobenius risk and the matrix ℓ2 risk in estimating the covariance matrix as in the

numerical study (Table 2),

• the vector ℓ2 error in estimating the first three principal eigenvectors (Table 3),

• the vector ℓ2 error in estimating the first three predictive principal component (PC)

scores (Table 4).

In the above, the first three predictive (PC) scores are defined as, for test samples Ytest,

PC
(test)
i =Y(test)vi, i = 1,2,3,

where vi is the i-th eigenvector (of the i-th largest eigenvalue) of the sample covariance

matrix Sn of the original data (i.e. training data). Similarly, for the synthesized data and its

sample covariance matrix, we can define the estimates of the PC scores as

P̂C
(test)
i =Y(test)v̂i, i = 1,2,3,

where v̂i is the i-th eigenvector of the sample covariance matrix of the synthesized data.

With these two datasets, we compare the estimation performance of the proposed SynCov

and CART in synthpop. It’s worth noting that we only consider SynCov and CART here

because they are two methods that outperformed others (SR and SR-PMD) in the numerical

study. In generating synthetic data, we considerm = n/5, n/2, n,2n,5n, where n is the sample

size of the original data and m is that of the synthetic data. We repeat these steps 100 times

and report their summaries in Tables 2 – 4.
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We have made a few findings from Tables 2–4. First, SynCov outperforms CART in all

cases considered in not only the estimation error of the covariance matrix itself but also

in the estimation of the first few principal eigenvectors and their PC scores. Second, the

performances of the synthetic data are improved as the sample size of the synthetic data m

increases in all cases for both SynCov and CART. However, the rate of the improvement

per sample decreases as m increases. Finally, interestingly, SynCov with m = n/5 (a small

size synthetic data) outperforms CART with m = 5n (a large-size synthetic data) in all cases

except one case, the matrix ℓ2 error of the covariance matrix estimation of the Firefighter (III)

case. Further, in this single case, the difference in the estimation error is nearly negligible. In

summary, the proposed synthetic data generation method provides better covariance matrix

estimation in terms of the Frobenius and matrix ℓ2 errors. This also results in improved

estimation performance in estimating the first few eigenstructures of the covariance matrix

and principal component analysis.

5.2 Application to Taiwanese Bankruptcy Data

In this section, we apply synthetic data generation methods to the Taiwanese Bankruptcy

dataset available at https://archive.ics.uci.edu/dataset/572/taiwanese+bankruptcy+

prediction. The Taiwanese bankruptcy data consists of 96 variables for 6819 companies in

Taiwan, collected from 1999 to 2009. Among the 96 variables, the variable Bankrupt denotes

the bankruptcy status of the company, where 1 indicates that the corresponding company

was bankrupt and 0 indicates non-bankruptcy. The other 95 variables are related to the

financial status of companies, such as the cash flow rate, the operating profit growth rate,

and the net value growth rate. Among the 95 variables, there are two categorical variables:

the liability assets flag and the net income flag. The liability assets flag indicates whether the

company has liability assets, while the net income flag indicates whether the company has

positive net income. In this application, we exclude these two variables because all compa-

nies have positive net income values and only 8 out of 6819 companies have liability assets.

Therefore, we have one binary variable indicating bankruptcy and 93 continuous financial

status-related variables reported in Table 5. In Table 5, we denote 24 variables having large

variances with a symbol (*) and apply the logarithmic transformation f(x) = log(1 + x) to
these variables to stabilize the variance for further analysis.

In this application, we consider the LDA to illustrate the advantage of the synthetic

data generation method in enhancing the covariance estimation. Specifically, let Bi be the

bankruptcy indicator variable of the i-th company and Zi = (Zi1, . . . , Zip)T be a vector of

13



the financial-status related variables of the i-th company. Suppose that Z∣B = 0 ∼ N(µ0,Σ)
and Z∣B = 1 ∼ N(µ1,Σ). Then, the LDA decision rule for the company’s bankruptcy with

the observed vector z is represented as

z⊺Σ−1(µ1 −µ0) >
1

2
µ⊺1Σ

−1µ1 −
1

2
µ⊺0Σ

−1µ0 + log(n0/n) − log(n1/n), (20)

where n is the total number of companies, n0 is the number of non-bankrupt companies, and

n1 is the number of bankrupt companies. To apply the LDA, we first examine the correlation

structure of the Taiwanese bankruptcy data, where the financial status-related variables are

highly correlated in general, and it could make the sample covariance matrix nearly singular.

We illustrate the correlation map of the 93 variables in Figure 1(a). As depicted in Figure

1 (a), there are several groups of highly correlated variables. For instance, Z1, Z2, Z4, and

Z85 exhibit high correlations, with values ranging between 0.9327 and 0.9917. To identify

these groups, we construct a network of 93 nodes (i.e., variables) with an edge that connects

two nodes when the absolute correlation of two nodes is greater than 0.95. We depict the

networks of all 93 nodes and highly correlated variables in Figure 2. From the network

representation, we found 11 groups of highly correlated variables and excluded 17 variables

(Z2, Z3, Z4, Z5, Z7,Z8,Z16, Z18,Z19,Z22, Z23,Z26,Z38,Z64,Z75,Z78,Z90) that have redundant

information and make the sample covariance matrix singular. We illustrate the correlation

map of the remaining 76 variables in Figure 1(b).

To evaluate the performance of LDA, we divide the 6819 companies into training and

testing datasets. Given that the number of bankrupt companies (220) is considerably smaller

than the number of non-bankrupt companies (6659), we randomly select 25 companies from

each class, where the class indicates the bankruptcy status of the companies. Then, we

consider the following four methods:

M1: (Original) The decision rule of the LDA is estimated using the original data,

comprising 6634 non-bankrupt and 195 bankrupt companies.

M2: (Original-Up) The decision rule of the LDA is estimated using the original data

with upsampling on the bankrupt company class, resulting in 6634 non-bankrupt and

6634 bankrupt companies. Note that upsampling is done by randomly resampling the

bankrupt class observations.

M3: (CART-Up) The decision rule of the LDA is estimated using synthetic data ob-

tained by CART with upsampling on the bankrupt company class, resulting in 6634

non-bankrupt and 6634 bankrupt companies.

14



(a) All 93 variables (b) Chosen 76 variables

Figure 1: Correlation maps of all variables and chosen variables used in the linear discriminant
analysis in Taiwanese bankruptcy data.

M4: (SynCov-Up) The decision rule of the LDA is estimated using synthetic data

obtained by SynCov with upsampling on the bankrupt company class, resulting in

6634 non-bankrupt and 6634 bankrupt companies.

To generate synthetic data for the Taiwanese bankruptcy dataset, we apply the synthetic

data generation method to each class dataset and then combine the two datasets. ForM3, we

use the R package synthpop with the CART method. For M4, we apply our own R functions

for the SynCov For M3 and M4, we generate additional observations for the bankrupt class

from the synthetic data generation methods to match the number of non-bankrupt class

observations; we refer to this approach as upsampling.

For the performance measures of the LDA, we consider four metrics: accuracy, sensitivity

(true positive rate), specificity (true negative rate), and F1 score, defined as follows:

ACC = TP + TN
P +N , SEN = TP

P
, SPC = TN

N
, F1 =

2TP

2TP + FP + FN ,

where P is the number of positives (B = 1), N is the number of negatives (B = 0), TP (TN)

is the number of true positives (negatives), and FP (FN) is the number of false positives

(negatives). We evaluate these four metrics using the prediction results for the testing data.

Since the results may vary depending on the selection of the testing data, we repeat the

described evaluation procedure 100 times.
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(a) All 93 variables (b) Highly correlated groups

Figure 2: Network graphs of all variables and identified groups of highly correlated variables
in Taiwanese bankruptcy data.

We report the summary of the four performance measures in Table 6. First, by comparing

the results of the original data (M1) and the original data with upsampling (M2), we

observe that the class imbalance significantly affects the prediction performance of the LDA,

as shown in Table 6. Moreover, by comparing the results of M2, M3, M4, we observe

that our SynCov with upsampling (M4) slightly enhances prediction performance across all

four metrics compared to the original data with upsampling (M2), while the CART with

upsampling (M3) performs significantly worse than M2 and M4.
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Table 1: Performance of covariance matrix estimation by SR, SynCov, SR-PMD, and CART
for Models 1–4. In the table, F and ℓ2 denote the Frobenius and the matrix ℓ2 loss.

n p Method
Model 1 Model 2 Model 3 Model 4
F ℓ2 F ℓ2 F ℓ2 F ℓ2

250

25

SynCov
0.35 0.22 2.26 1.17 2.65 2.55 2.44 1.84
(0.04) (0.05) (0.17) (0.20) (1.46) (1.51) (0.48) (0.62)

SR
0.36 0.23 2.43 1.35 2.53 2.42 2.46 1.83
(0.04) (0.05) (0.21) (0.25) (1.37) (1.43) (0.48) (0.64)

SR-PMD
0.36 0.23 2.38 1.28 4.30 4.12 2.46 1.83
(0.04) (0.06) (0.20) (0.23) (2.86) (2.94) (0.43) (0.58)

CART
0.37 0.23 2.29 1.21 2.64 2.53 2.61 2.00
(0.04) (0.06) (0.18) (0.21) (1.37) (1.43) (0.48) (0.64)

50

SynCov
0.41 0.24 4.43 1.87 5.36 4.82 4.69 2.52
(0.03) (0.05) (0.19) (0.24) (2.34) (2.46) (0.30) (0.52)

SR
0.43 0.25 5.10 2.38 5.52 5.00 5.04 2.65
(0.04) (0.05) (0.27) (0.30) (2.44) (2.56) (0.35) (0.62)

SR-PMD
0.43 0.25 4.96 2.26 11.47 10.80 4.93 2.55
(0.04) (0.06) (0.25) (0.28) (7.81) (8.05) (0.28) (0.49)

CART
0.42 0.25 4.27 1.85 5.27 4.69 4.58 2.66
(0.04) (0.06) (0.19) (0.25) (2.09) (2.22) (0.31) (0.51)

100

SynCov
0.48 0.25 8.80 3.14 13.38 11.56 9.14 3.57
(0.03) (0.05) (0.26) (0.31) (4.23) (4.54) (0.22) (0.50)

SR
0.51 0.27 11.40 4.42 14.17 12.32 11.15 4.13
(0.04) (0.06) (0.38) (0.38) (4.41) (4.70) (0.31) (0.61)

SR-PMD
0.50 0.27 10.95 4.16 33.15 30.40 10.84 3.92
(0.04) (0.06) (0.35) (0.36) (16.89) (17.28) (0.28) (0.53)

CART
0.46 0.26 7.95 2.76 11.34 8.98 8.31 3.65
(0.04) (0.06) (0.21) (0.26) (3.05) (3.22) (0.25) (0.52)

500

25

SynCov
0.25 0.16 1.61 0.81 1.81 1.73 1.69 1.27
(0.03) (0.04) (0.11) (0.13) (0.97) (1.01) (0.33) (0.43)

SR
0.25 0.16 1.68 0.89 1.86 1.78 1.74 1.31
(0.03) (0.04) (0.13) (0.15) (1.00) (1.04) (0.34) (0.45)

SR-PMD
0.25 0.16 1.65 0.86 3.21 3.10 1.70 1.28
(0.03) (0.04) (0.13) (0.15) (2.25) (2.30) (0.29) (0.40)

CART
0.26 0.16 1.67 0.88 1.87 1.79 1.91 1.48
(0.03) (0.04) (0.12) (0.15) (1.02) (1.06) (0.38) (0.50)

50

SynCov
0.29 0.17 3.17 1.27 3.69 3.35 3.29 1.80
(0.02) (0.04) (0.13) (0.15) (1.53) (1.60) (0.22) (0.40)

SR
0.30 0.17 3.40 1.48 3.78 3.42 3.40 1.82
(0.03) (0.04) (0.15) (0.18) (1.59) (1.69) (0.22) (0.41)

SR-PMD
0.30 0.17 3.35 1.44 9.17 8.79 3.36 1.79
(0.02) (0.04) (0.14) (0.17) (6.92) (7.06) (0.22) (0.38)

CART
0.30 0.17 3.12 1.32 3.70 3.29 3.37 2.01
(0.03) (0.04) (0.13) (0.17) (1.43) (1.52) (0.25) (0.43)

100

SynCov
0.34 0.18 6.23 2.01 8.13 6.81 6.38 2.48
(0.02) (0.04) (0.14) (0.17) (2.41) (2.57) (0.15) (0.36)

SR
0.35 0.18 7.14 2.52 8.50 7.18 7.07 2.63
(0.02) (0.04) (0.19) (0.19) (2.57) (2.73) (0.18) (0.42)

SR-PMD
0.34 0.18 7.05 2.46 24.79 23.25 7.00 2.57
(0.02) (0.04) (0.19) (0.19) (13.77) (14.05) (0.17) (0.39)

CART
0.33 0.18 5.77 1.91 7.93 6.19 6.04 2.65
(0.02) (0.04) (0.13) (0.17) (2.12) (2.21) (0.17) (0.35)
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Table 2: The error in covariance matrix estimation error by SynCov and the CART using
synthpop for Police Officer (II, III) and Firefighter (III) in the LA Employee Payroll data.
F and ℓ2 denote the Frobenius and matrix ℓ2 distance between the sample covariance matrix
of the synthetic data and that of the original data, respectively.

Job Norm Method
Synthetic data sample size m

m = n/5 n/2 n 2n 5n

F
SynCov

0.1574 0.1023 0.0730 0.0533 0.0336
(0.0066) (0.0038) (0.0028) (0.0021) (0.0013)

CART
0.7130 0.4693 0.3509 0.2913 0.2062

Police officer (0.0363) (0.0226) (0.0148) (0.0128) (0.0070)
(II, III)

ℓ2

SynCov
0.1416 0.0916 0.0660 0.0482 0.0303
(0.0070) (0.0042) (0.0030) (0.0022) (0.0014)

CART
0.6514 0.4232 0.3109 0.2621 0.1752
(0.0384) (0.0243) (0.0159) (0.0137) (0.0076)

F
SynCov

0.3359 0.2079 0.1357 0.1045 0.0706
(0.0100) (0.0069) (0.0047) (0.0033) (0.0024)

CART
1.3738 0.8467 0.6489 0.4650 0.3412

Firefighter (0.0487) (0.0297) (0.0248) (0.0145) (0.0107)
(III)

ℓ2

SynCov
0.2913 0.1777 0.1142 0.0887 0.0616
(0.0109) (0.0074) (0.0049) (0.0034) (0.0026)

CART
1.2199 0.7385 0.5598 0.3979 0.2876
(0.0512) (0.0302) (0.0259) (0.0149) (0.0114)
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Table 3: The vector ℓ2 error between the first three principal component vectors (v1,v2,v3) of
the original data and those of the synthetic data for the Police Officer (II, III) and Firefighter
(III) in the LA Employee Payroll data.

Job Eigenvector Method
Synthetic data sample size m

n/5 n/2 n 2n 5n

v1

SynCov
0.0126 0.0082 0.0055 0.0040 0.0026
(0.0005) (0.0003) (0.0002) (0.0002) (0.0001)

CART
0.0530 0.0334 0.0273 0.0213 0.0172
(0.0030) (0.0013) (0.0012) (0.0007) (0.0006)

v2

SynCov
0.0298 0.0199 0.0121 0.0102 0.0060

Police officer (0.0014) (0.0008) (0.0005) (0.0005) (0.0002)
(II, III)

CART
0.1179 0.0885 0.0787 0.0754 0.0720
(0.0047) (0.0034) (0.0026) (0.0021) (0.0019)

v3

SynCov
0.0381 0.0252 0.0164 0.0132 0.0079
(0.0015) (0.0008) (0.0007) (0.0005) (0.0003)

CART
0.1529 0.1136 0.0923 0.0826 0.0760
(0.0055) (0.0040) (0.0028) (0.0020) (0.0019)

v1

SynCov
0.0372 0.0232 0.0159 0.0120 0.0080
(0.0018) (0.0012) (0.0008) (0.0006) (0.0004)

CART
0.1589 0.1095 0.0817 0.0563 0.0429
(0.0081) (0.0061) (0.0042) (0.0027) (0.0021)

v2

SynCov
0.0492 0.0288 0.0215 0.0154 0.0102

Firefighter (0.0018) (0.0012) (0.0008) (0.0005) (0.0004)
(III)

CART
0.1962 0.1246 0.0954 0.0690 0.0546
(0.0091) (0.0058) (0.0040) (0.0026) (0.0019)

v3

SynCov
0.0770 0.0473 0.0354 0.0245 0.0145
(0.0032) (0.0017) (0.0014) (0.0010) (0.0005)

CART
0.2897 0.1997 0.1415 0.1107 0.0894
(0.0139) (0.0096) (0.0068) (0.0052) (0.0030)
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Table 4: The vector L2 norm of the difference between the first three principal component
scores (PC(test)1 = Y(test)v1, PC

(test)
2 = Y(test)v2, PC

(test)
3 = Y(test)v3) of the test data using

the principal components of the original data and those of the synthetic data for the Police
Officer (II, III) and Firefighter (III) in the LA Employee Payroll data.

Job PC score Method
Synthetic data sample size m

n/5 n/2 n 2n 5n

Y(test)v1

SynCov
0.3712 0.2398 0.1536 0.1149 0.0758
(0.0212) (0.0128) (0.0088) (0.0064) (0.0042)

CART
1.4964 0.9180 0.7475 0.5320 0.4492
(0.1169) (0.0503) (0.0480) (0.0253) (0.0207)

Y(test)v2

SynCov
0.9802 0.6466 0.3771 0.3151 0.1908

Police officer (0.0479) (0.0284) (0.0198) (0.0157) (0.0087)
(II, III)

CART
3.8425 2.7118 2.3798 2.1181 2.0007
(0.2209) (0.1077) (0.0929) (0.0668) (0.0531)

Y(test)v3

SynCov
1.0458 0.7121 0.4282 0.3836 0.2142
(0.0511) (0.0312) (0.0204) (0.0196) (0.0095)

CART
4.2420 3.2104 2.8753 2.7586 2.6298
(0.1913) (0.1380) (0.1021) (0.0819) (0.0713)

Y(test)v1

SynCov
1.5598 0.9401 0.6456 0.4863 0.3407
(0.0987) (0.0657) (0.0404) (0.0296) (0.0224)

CART
6.6879 4.6253 3.2639 2.3336 1.7397
(0.4555) (0.3191) (0.2186) (0.1542) (0.1159)

Y(test)v2

SynCov
2.3925 1.3909 0.9833 0.7364 0.5182

Firefighter (0.1374) (0.0951) (0.0592) (0.0428) (0.0317)
(II, III)

CART
9.6011 6.6258 4.7722 3.4706 2.5950
(0.6233) (0.4730) (0.3175) (0.2114) (0.1649)

Y(test)v3

SynCov
2.1368 1.2988 0.9588 0.6889 0.3991
(0.0906) (0.0412) (0.0332) (0.0259) (0.0151)

CART
8.1840 5.3122 3.9970 2.9909 2.4760
(0.3798) (0.2233) (0.1832) (0.1216) (0.0848)
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Table 5: Summary of variables in Taiwanese bankruptcy data.

B: Bankruptcy Z1: ROA C before interest and depreciation before interest
Z2: ROA A before interest and after tax Z3: ROA B before interest and depreciation after tax
Z4: Operating Gross Margin Z5: Realized Sales Gross Margin
Z6: Operating Profit Rate Z7: Pre tax net Interest Rate
Z8: After tax net Interest Rate Z9: Non industry income and expenditure revenue
Z10: Continuous interest rate after tax Z∗11: Operating Expense Rate
Z∗12: Research and development expense rate Z13: Cash flow rate
Z∗14: Interest bearing debt interest rate Z15: Tax rate A
Z16: Net Value Per Share B Z17: Net Value Per Share A
Z18: Net Value Per Share C Z19: Persistent EPS in the Last Four Seasons
Z20: Cash Flow Per Share Z∗21: Revenue Per Share Yuan
Z22: Operating Profit Per Share Yuan Z23: Per Share Net profit before tax Yuan
Z24: Realized Sales Gross Profit Growth Rate Z25: Operating Profit Growth Rate
Z26: After tax Net Profit Growth Rate Z27: Regular Net Profit Growth Rate
Z28: Continuous Net Profit Growth Rate Z∗29: Total Asset Growth Rate
Z∗30: Net Value Growth Rate Z31: Total Asset Return Growth Rate Ratio
Z32: Cash Reinvestment Z∗33: Current Ratio
Z∗34: Quick Ratio Z35: Interest Expense Ratio
Z∗36: Total debt Total net worth Z37: Debt ratio
Z38: Net worth Assets Z39: Long term fund suitability ratio A
Z40: Borrowing dependency Z41: Contingent liabilities Net worth
Z42: Operating profit Paid in capital Z43: Net profit before tax Paid in capital
Z44: Inventory and accounts receivable Net value Z45: Total Asset Turnover
Z∗46: Accounts Receivable Turnover Z∗47: Average Collection Days
Z∗48: Inventory Turnover Rate times Z∗49: Fixed Assets Turnover Frequency
Z50: Net Worth Turnover Rate times Z∗51: Revenue per person
Z52: Operating profit per person Z∗53: Allocation rate per person
Z54: Working Capital to Total Assets Z55: Quick Assets Total Assets
Z56: Current Assets Total Assets Z57: Cash Total Assets
Z∗58: Quick Assets Current Liability Z∗59: Cash Current Liability
Z60: Current Liability to Assets Z61: Operating Funds to Liability
Z62: Inventory Working Capital Z∗63: Inventory Current Liability
Z64: Current Liabilities Liability Z65: Working Capital Equity
Z66: Current Liabilities Equity Z∗67: Long term Liability to Current Assets
Z68: Retained Earnings to Total Assets Z69: Total income Total expense
Z70: Total expense Assets Z∗71: Current Asset Turnover Rate
Z∗72: Quick Asset Turnover Rate Z73: Working capitcal Turnover Rate
Z∗74: Cash Turnover Rate Z75: Cash Flow to Sales
Z∗76: Fixed Assets to Assets Z77: Current Liability to Liability
Z78: Current Liability to Equity Z79: Equity to Long term Liability
Z80: Cash Flow to Total Assets Z81: Cash Flow to Liability
Z82: CFO to Assets Z83: Cash Flow to Equity
Z84: Current Liability to Current Assets Z85: Net Income to Total Assets
Z∗86: Total assets to GNP price Z87: No credit Interval
Z88: Gross Profit to Sales Z89: Net Income to Stockholder s Equity
Z90: Liability to Equity Z91: Degree of Financial Leverage DFL
Z92: Interest Coverage Ratio Interest expense to EBIT Z93: Equity to Liability
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Table 6: Summary of the four performance metrics for Taiwanese bankruptcy data. Numbers
in parentheses denote the standard errors.

Method ACC SEN SPC F1 score

Original (M1)
0.6480 0.3120 0.9840 0.4644
(0.0040) (0.0079) (0.0023) (0.0091)

Original-Up (M2)
0.8342 0.8124 0.8560 0.8297
(0.0056) (0.0082) (0.0078) (0.0059)

CART-Up (M3)
0.8240 0.7964 0.8516 0.8181
(0.0051) (0.0079) (0.0073) (0.0055)

SynCov-Up (M4)
0.8380 0.8184 0.8576 0.8342
(0.0053) (0.0075) (0.0075) (0.0055)
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6 Conclusion

In this paper, we propose to shrink the error variances in generating synthetic data based

on the sequential regression model. We prove that our new synthetic data generator, named

SynCov, provides a better covariance matrix estimator than the original without shrinking.

We numerically show that the improved covariance matrix further (i) provides better esti-

mates of the first few eigenstructures of the covariance matrix, which are important in the

principal component analysis, and also (ii) introduces an enhanced classifier performing bet-

ter than that with the existing synthetic data generators. We illustrate our SynCov with two

real data examples, the LA Employee Payroll Data and the Taiwanese Bankruptcy Data.

We remark that our SynCov is a synthetic data generator aiming for a specific tailored

purpose, the estimation of the covariance matrix, while all existing synthetic data generators

are for general and universal purposes. The covariance matrix plays an important role in

many multivariate procedures and, we expect that the synthetic data by our SynCop also

perform better than that by the original (unshrinking) synthetic data in subsequent multi-

variate procedures including the testing of the mean vectors or covariance matrices of two

or more populations and the classification of observations. We numerically investigate this

in this paper. However, it should be further investigated with pencils.

Two additional remarks on our SynCov are as follows. First, our SynCov can straight-

forwardly be applied to synthetic data generation of mixed data containing both categorical

variables and continuous variables, if the number of categorical variables is not many. It

can be done by first generating categorical variables and next generating continuous vari-

ables for each case of categorical variables. Second, our SynCov in this paper only considers

the cases with n > p to apply sequential regression models. However, for the cases p ≥ n, we
adopt sequential regularized regressions which are closely connected to the modified Cholesky

decomposition-based estimation of the covariance matrix in the literature. We leave this as

a part of future work.
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