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Highlights 

∙ We examine the problem of mining choice between Litecoin and Dogecoin.   

∙ Surges in Dogecoin price significantly affect mining choices, influencing hashrates.   

∙ Fear-of-missing-out can affect miners, inducing herding-like mining decisions. 

 

Abstract.    

This study investigates the relationship between cryptocurrency returns and mining decisions, 

particularly when there are abrupt price fluctuations, so the fear-of-missing-out (FOMO) effect may 

exist. We examine Litecoin (LTC) and Dogecoin (DOGE) markets, which share the same cryptographic 

algorithm so that no additional investment is required when switching from mining one to the other, 

with only the latter as a ‘meme’ asset. We employ the quantile vector autoregressive connectedness 

approach to estimate the net directional connectedness between 30-day hashrate log growth rates and 

log returns in the two markets. Fluctuations in DOGE returns can significantly influence mining choices, 

particularly during abrupt spikes in DOGE prices. The influence implies that the FOMO effect in the 

cryptocurrency market can impact miners’ decisions.  
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1. Introduction 

Most classical finance literature in behavioral finance and market microstructure suggests that 

institutional investors are generally less affected by irrational factors like sentiment, whereas retail 

investors are more vulnerable. Ofek and Richardson (2003) argue that a higher presence of retail 
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investors makes it more susceptible to behavioral biases that can result in irrational beliefs. Choi, Jin, 

and Yan (2013) find that increases in retail ownership are associated with overpricing, whereas this is 

not the case for institutional investors. With the difference in the degree of behavioral bias and other 

factors that make institutional investors more competitive, the institutions tend to incorporate news 

information more quickly (Ben-Rephael, Da, and Israelsen, 2017), making asset prices more efficient 

and informative (Kacperczyk, Sundaresan, and Wang, 2021), while outperforming retail investors in 

terms of returns and Sharpe ratio (Hu, Kirilova, Park, and Ryu, 2024). 

In the cryptocurrency market, miners share some common characteristics with institutions. Li, 

Reppen, and Sircar (2024) note that major miners benefit from cheaper electricity and more efficient 

hardware, providing them with a cost advantage. It has been difficult for cryptocurrency miners to 

survive the mining competition, which is so intensive that even its sustainability became questionable 

(Saleh, 2021) without such a cost advantage. These findings suggest that most cryptocurrency miners 

retain competitiveness by investing significant resources to leverage their extensive expertise and 

informational advantage, similar to institutional investors. Given this similarity, it is reasonable to 

expect that miners’ investment decisions are comparable to those of institutional investors and, therefore, 

less prone to irrational trading motivations than non-mining cryptocurrency market traders. This 

expectation carries more conviction with the findings that institutional investors in conventional 

markets rarely trade cryptocurrencies (Chen, Lepori, Tai, and Sung, 2022).  

However, at least three factors make it unlikely to regard miners as trading rationally as institutional 

traders do in conventional markets. First, the cryptocurrency market is driven more heavily by irrational 

factors than other markets, mainly because it is still unclear how to define the ‘fundamentals’ in this 

market. Given its short history, academics have only recently started to develop pricing and valuation 

models for cryptocurrencies (Cong, Li, and Wang, 2021; Liu and Tsyvinski, 2021; Liu, Tsyvinski, and 

Wu, 2022). Furthermore, although cryptocurrencies can be regarded as a means of payment on 

platforms for specific economic transactions, as stated by Cong, Li, and Wang (2022), it is often difficult 

to figure out a concrete and detailed specification of the token economics, which are commonly 

immature. Hence, it is less likely to find a group of traders pursuing trading based on fundamentals in 

the cryptocurrency market than in other markets. 

Second, miners do their job in a significantly flexible way by organizing open mining pools. As 

demonstrated by Cong, He, and Li (2022), although individual miners achieve competitiveness by 

mining collectively as a mining pool, the pool has clear distinctions from firms such as financial 

institutions. Individual miners can freely diversify their resources across multiple mining pools, similar 

to workers on on-demand labor platforms, which implies that it is virtually costless for an individual 

miner to join and quit different mining pools repeatedly. Hence, it may be appropriate to regard mining 

pools as temporarily clustered groups of individual miners rather than firmly bound organizations such 
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as institutions. This property suggests that miners have characteristics as traders closer to individuals 

than institutions. 

Third, even when we assume that miners are more informed and rational than non-miners, the 

increased uncertainty due to irrationality may limit the price-stabilizing ability of miners, depriving the 

private information miners have of its informational value. Stein (1987) theoretically predicts that when 

more speculative traders enter a market, price destabilization will follow if the private information held 

by informed traders is incomplete. Blau, Bowles, and Whitby (2016) support this prediction by 

empirically demonstrating that speculative traders with lottery preferences can destabilize stock prices. 

Given the evidence of gambling or lottery preferences among cryptocurrency market participants 

(Dhawan and Putniņš, 2023; Hackethal, Hanspal, Lammer, and Rink, 2022), miners may also have a 

limited ability to stabilize prices even when they are informed, and therefore, may not be able to exploit 

the asymmetry in information and rationality as fully as institutional investors do in conventional 

markets. 

Given these three factors and the similarity between institutions and miners, it would be meaningful 

to investigate how miners make mining decisions while examining whether irrational factors can affect 

them. However, this investigation is not readily achievable due to the unique way miners engage in the 

cryptocurrency market. Miners acquire cryptocurrencies through mining rather than purchasing, and 

analyzing mining strategy solely through tracking their trading behavior is challenging. Hence, mining-

related variables, such as hashrate, should be considered when investigating mining decisions. However, 

mining-related variables are challenging to analyze due to their susceptibility to various factors, such 

as electricity price and hardware efficiency (Capponi, Ólafsson, and Alsabah, 2023). Therefore, it is 

crucial to understand the relationship between mining-related variables and mining decisions before 

using them as proxies for mining decisions. 

This study attempts to circumvent this issue by examining markets where mining decisions can be 

simplified. Specifically, we choose the Litecoin (LTC) and Dogecoin (DOGE) markets to analyze 

cryptocurrency miners’ decision-making processes. DOGE is the primary currency of the Dogecoin 

blockchain, which originated as a hard fork from the Luckycoin blockchain, itself a fork from the 

Litecoin blockchain. Given this blockchain family tree, the Litecoin and Dogecoin blockchains share 

the same cryptographic algorithm called Scrypt. This identity allows miners to switch between LTC and 

DOGE or even mine both simultaneously without any significant additional hardware investment or re-

optimization. Mining techniques such as LTC-DOGE merged mining, enabling miners to mine both 

cryptocurrencies simultaneously without additional computational effort, demonstrate this versatility. 

The seamless transition between the two cryptocurrencies simplifies the decision-making process for 

miners. Since mining can be carried out in an almost identical environment regardless of the miner’s 

choice of cryptocurrency, miners only need to consider a few factors, such as economic rewards and 
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mining difficulty. 

This simplicity creates a natural laboratory to examine how expected changes in economic rewards 

affect mining choices by investigating the relationship between cryptocurrency returns and mining-

related variables such as hashrate. In this study, we exploit this opportunity to investigate how collective 

mining decisions in the LTC-DOGE market are related to the corresponding cryptocurrency returns. 

Given that DOGE is one of the most well-known ‘memecoins,’ whose prices tend to be heavily affected 

by irrational market behaviors, we focus on how such irrational market behaviors are related to mining 

decisions. Pairing DOGE with LTC highlights this relationship because LTC is far from the concept of 

a memecoin, with the Litecoin blockchain developed as a sidechain of the Bitcoin blockchain. 

A type of irrational behavior we utilize in this study is investor herding due to the fear of missing out 

(FOMO), which is commonly cited as a characteristic phenomenon in the cryptocurrency market (Baur 

and Dimpfl, 2018; Bleher and Dimpfl, 2019; Kakinaka and Umeno, 2022; Kristoufek, 2020; Kulbhaskar 

and Subramaniam, 2023). Kuchler and Stroebel (2021) define FOMO as the widespread fear that others 

may be enjoying beneficial experiences that one is missing out on. Given this definition, a characteristic 

pattern in FOMO-oriented price responses would be its asymmetry, which is biased towards positive 

news or returns. Saggu (2022) empirically demonstrates that the cryptocurrency markets’ price reaction 

to social media is primarily driven by FOMO, revealing an asymmetric response pattern in bitcoin price, 

which significantly reacts only to positive news. Hence, if we can reveal that miners asymmetrically 

react to cryptocurrency price dynamics, showing notable responses only to significantly positive returns, 

then this pattern would serve as meaningful evidence of the effect of FOMO on miners’ herding behavior. 

If it exists, the asymmetric pattern in miners’ response to price dynamics can be highlighted because 

miners are not likely to be significant buyers but are prominent sellers in the cryptocurrency market. 

Since miners participate in the market primarily by selling their inventories, they can lead the bearish 

price movements, particularly when miners agree on when to sell, and the inventory sales occupy a 

large proportion of the sell volume in the market. Thus, if miners’ herding behavior is affected by FOMO, 

a significantly asymmetric lead-lag relationship between cryptocurrency returns and mining investment 

decisions would exist. 

We employ the quantile vector autoregressive (Q-VAR) connectedness approach, proposed by Ando, 

Greenwood-Nimmo, and Shin (2022) (AGS), to examine the interrelations between cryptocurrency 

returns and mining decisions. The empirical results suggest that returns can significantly affect mining 

decisions when there are sudden surges in DOGE price, implying that the FOMO effect in the 

cryptocurrency market can influence the miners. Although there is no clear and monotonic tendency 

that cryptocurrency returns lead mining decisions, the NDC index value indicates that the DOGE returns 

influence the hashrate growth rate exceptionally significantly when DOGE returns are at their peaks. In 

contrast, the hashrates do not react similarly to LTC returns, suggesting that not every cryptocurrency 
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induces a FOMO effect. Empirical results reveal that significant increases in LTC prices do not affect 

miners as much as DOGE price surges do, implying that DOGE as a memecoin has a more significant 

impact on miners with their abrupt price hikes. 

The rest of this paper is organized as follows: Section 2 provides an overview of the sample data 

collected from the LTC-DOGE market. Section 3 outlines the methodology employed in our empirical 

analysis, and Section 4 summarizes the empirical findings. Finally, Section 5 concludes the paper. 

 

2. Data 

The daily LTC-DOGE hashrate and returns data in this study span 111 months from January 2015 to 

March 2024. The hashrate for a cryptocurrency represents the rate at which hash operations are 

performed by all the combined mining hardware working to mine that cryptocurrency. A hash operation 

involves producing a fixed-size string using a hash function to solve mathematical puzzles for 

cryptocurrency mining. Given these definitions, we employ LTC and DOGE hashrates as proxies for 

the amount of resources cryptocurrency miners commit to LTC and DOGE mining, respectively. We 

collect the hashrate and returns data from BitInfoCharts (https://bitinfocharts.com), a comprehensive 

cryptocurrency data and analysis platform referenced by several previous studies (Basu, Easley, O’Hara, 

and Sirer, 2023; Garratt and van Oordt, 2023; Malik, Aseri, Singh, and Srinivasan, 2022). Hashrate is 

measured as the average hashrate (hash/s) per day.  

To investigate the relationship between hashrates and returns under a well-balanced setting, we 

transform the variables uniformly. First, we calculate the 30-day log-difference for each variable. 

Specifically, for hashrates and returns, we measure the 30-day log growth rates 𝐻 and log returns 𝑅, 

respectively, as follows:  

 𝐻𝐿𝑇𝐶,𝑡 = 𝑙𝑛(ℎ𝐿𝑇𝐶,𝑡/ℎ𝐿𝑇𝐶,𝑡−30), (1) 

 𝐻𝐷𝑂𝐺𝐸,𝑡 = 𝑙𝑛(ℎ𝐷𝑂𝐺𝐸,𝑡/ℎ𝐷𝑂𝐺𝐸,𝑡−30), (2) 

 𝑅𝐿𝑇𝐶,𝑡 = 𝑙𝑛(𝑝𝐿𝑇𝐶,𝑡/𝑝𝐿𝑇𝐶,𝑡−30), (3) 

 𝑅𝐷𝑂𝐺𝐸,𝑡 = 𝑙𝑛(𝑝𝐷𝑂𝐺𝐸,𝑡/𝑝𝐷𝑂𝐺𝐸,𝑡−30), (4) 

where ℎ𝑖,𝑡 and 𝑝𝑖,𝑡 are the hashrate and price of cryptocurrency 𝑖 on day 𝑡, respectively. We opt for 

the 30-day period instead of examining daily change rates to capture the evolutionary characteristics of 

investor decision-making procedures and the FOMO effect (Park, Ryu, and Webb, 2024).  

Next, we compute the difference in the growth rates and returns between LTC and DOGE to utilize 

them as the primary variables as follows: 

 𝐻𝐷𝐼𝐹𝐹,𝑡 = 𝐻𝐿𝑇𝐶,𝑡 − 𝐻𝐷𝑂𝐺𝐸,𝑡, (5) 

 𝑅𝐷𝐼𝐹𝐹,𝑡 = 𝑅𝐿𝑇𝐶,𝑡 − 𝑅𝐷𝑂𝐺𝐸,𝑡. (6) 
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We adopt the differences between the two currencies as the primary variables to consider the fact that 

miners make choices between the two cryptocurrencies. Figure 1 illustrates the time series dynamics of 

the differences, as well as the 30-day log growth rates and log-returns. 

 

[Figure 1 about here] 

 

3. Methodology 

In this study, we investigate the time-varying connectedness between LTC-DOGE returns and 

hashrate growth rates to evaluate the influence of returns on mining decisions. We employ the Q-VAR 

connectedness approach of AGT, who adopt the connectedness analysis framework of Diebold and 

Yılmaz (2012, 2014). While non-quantile connectedness approaches estimate the effect of an average-

sized shock from one variable on another, the Q-VAR approach enables us to estimate the effect of 

idiosyncratic shocks from one variable on another as the size of the shocks varies. This characteristic is 

useful in our study because we are interested in how abrupt changes, whose magnitudes are larger than 

average, influence mining decisions. Furthermore, given the properties of the main variables in this 

study, the quantile value we set in the Q-VAR approach provides information on the idiosyncratic shocks. 

The Q-VAR approach estimates VAR models at a conditional quantile, which we denote as 𝜏 ∈ (0,1). 

We follow the procedure of Chatziantoniou, Gabauer, and Stenfors (2021) to employ the Q-VAR 

connectedness approach using the R package ‘ConnectednessApproach’.1 The following VAR model 

is adopted to explain 𝐻𝐷𝐼𝐹𝐹,𝑡 and 𝑅𝐷𝐼𝐹𝐹,𝑡 in Equations (5) and (6) as an autoregressive function: 

 𝒚𝑡 = 𝝁(𝜏) + ∑ 𝜱𝑗(𝜏)𝒚𝑡−𝑗
𝑝
𝑗=1 + 𝒗𝑡, (7) 

where 𝒚𝑡 = [𝐻𝐷𝐼𝐹𝐹,𝑡   𝑅𝐷𝐼𝐹𝐹,𝑡]′  is a 2 × 1  vector of endogenous variables, 𝝁(𝜏)  is the conditional 

mean vector for conditional quantile 𝜏 , 𝑝  is the lag length, 𝜱𝑗(𝜏)  is a 2 × 2  Q-VAR coefficient 

matrix for the 𝑗th lag and conditional quantile 𝜏, 𝒗𝑡 is a 2 × 1 vector of regression residuals with a 

2 × 2  positive definite variance-covariance matrix, denoted as 𝜮(𝜏) . The Wold representation of 

Equation (7) can be expressed as: 

 𝒚𝑡 = 𝝁(𝜏) + ∑ 𝜳𝑗(𝜏)𝒗𝑡−𝑗
∞
𝑗=1 , (8) 

which is a transformation from a quantile VAR process of order 𝑝  to its vector moving average 

representation of infinite order. 

We then proceed to an 𝐻-step-ahead generalized forecast error variance decomposition (GFEVD) of 

 
1 https://github.com/GabauerDavid/ConnectednessApproach  

https://github.com/GabauerDavid/ConnectednessApproach
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the endogenous variables to measure the proportion of forecast error variation in an endogenous variable 

attributable to shocks coming from the other endogenous variable. Following previous studies, CGS 

and, we set 𝐻 = 20 (Chatziantoniou, Gabauer, and Stenfors, 2021; Gabauer and Stenfors, 2024). With 

GFEVD, the portion attributable to shocks from the 𝑗 th endogenous variable for the forecast error 

variation of the 𝑖th endogenous variable can be expressed as:  

 𝛹𝑖𝑗(𝜏)(𝐻) =
𝛴𝑖𝑖(𝜏)

−1 ∑ (𝒆𝑖
′𝜳(𝜏)(ℎ)𝜮(𝜏)𝒆𝑗)2𝐻−1

ℎ=0

∑ (𝒆𝑖
′𝜳(𝜏)(ℎ)𝜮(𝜏)𝜳(𝜏)

′ (ℎ)𝒆𝑖)𝐻−1
ℎ=0

, (9) 

where 𝒆𝑖  represents 2 × 1  vector whose value is one on the 𝑖 th row and zero otherwise. We then 

normalize 𝛹𝑖𝑗(𝜏)(𝐻) in Equation (9) as: 

 �̃�𝑖𝑗(𝜏)(𝐻) =
𝛹𝑖𝑗(𝜏)(𝐻)

∑ 𝛹𝑖𝑗(𝜏)(𝐻)2
𝑗=1

, (10) 

so that the conditions ∑ �̃�𝑖𝑗(𝜏)(𝐻)2
𝑖=1 = 1 and ∑ ∑ �̃�𝑖𝑗(𝜏)(𝐻)2

𝑖=1
2
𝑗=1 = 2 can be satisfied. The first 

condition means that the magnitude of the shocks coming from a single endogenous variable sums to 

one, influencing both the originating variable and the other. 

With the result of GFEVD, we compute NDC, which is the difference between the magnitude of 

shock transmissions from an endogenous variable to the others and vice versa. Based on Equation (10), 

NDC can be expressed as: 

 𝑁𝐷𝐶𝑖𝑗(𝜏)(𝐻) = �̃�𝑖𝑗(𝜏)(𝐻) − �̃�𝑗𝑖(𝜏)(𝐻), (11) 

given that there are only two endogenous variables considered in this study. We calculate NDC for 

𝑅𝐷𝐼𝐹𝐹,𝑡  so that a positive (negative) value of NDC indicates the return difference has more (less) 

significant influence to 𝐻𝐷𝐼𝐹𝐹,𝑡 compared to the reverse scenario.  

 

4. Empirical analysis 

4.1. Connectedness between hashrate growth and return differences 

To empirically investigate the relationship between LTC-DOGE hashrates and returns, we first 

estimate the NDC between the hashrate growth and return differences, 𝐻𝐷𝐼𝐹𝐹,𝑡 and 𝑅𝐷𝐼𝐹𝐹,𝑡, for the 

sample period, based on the Q-VAR approach. We then examine the pattern in the dynamics of the NDC 

index to determine whether there is evidence that mining decisions are closely associated with 

cryptocurrency returns. We particularly focus on the NDC dynamics when there are notable fluctuations 

in returns so that traces of the FOMO effect on mining choices can be identified. If the FOMO effect 

affects cryptocurrency miners, we expect that cryptocurrency returns will significantly influence mining 

decisions when there are large return fluctuations. 
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Figure 2 illustrates the NDC estimation result, which reveals three noteworthy findings. First, there 

is no clear and monotonic tendency for cryptocurrency returns to lead or follow mining decisions. The 

fluctuations in the value of NDC indicate that the relative degree of influence between returns and 

hashrates is time-varying and depends on quantile selection. Second, despite the unclear tendency, NDC 

tends to have significantly positive values, which means that returns influence hashrates more 

significantly than vice versa when there is a surge in DOGE returns. As marked with dashed lines in 

Figure 2, NDC is highest in February 2016, January 2018, and February 2021, particularly for the lowest 

quantiles at which DOGE returns tend to be significantly higher than LTC returns. Third, at the highest 

quantiles, for which LTC returns are significantly higher than DOGE returns, NDC is often negative, 

implying that significant changes in hashrates frequently precede high LTC returns. 

 

[Figure 2 about here] 

 

Although Figure 2 suggests that the relationship between cryptocurrency returns and mining 

decisions may be affected by return fluctuations, the figure does not provide any statistical evidence for 

this phenomenon. Hence, we further investigate the relationship between NDC and individual factors, 

such as the hashrates and returns for both LTC and DOGE, to analyze the factors determining the 

relationship between returns and mining decisions in more detail. We estimate a set of OLS models 

using NDC as the dependent variable and hashrates and returns as independent variables. Given the 

extremely high correlation between 𝐻𝐿𝑇𝐶,𝑡 and 𝐻𝐷𝑂𝐺𝐸,𝑡, which is 0.927, we employ the first principal 

component of the two hashrates, 𝐻𝑃𝐶,𝑡, which can be interpreted as the overall hashrate growth rate, as 

an independent variable instead of using hashrates for each cryptocurrency. For returns, we include the 

individual returns 𝑅𝐿𝑇𝐶,𝑡 and 𝑅𝐷𝑂𝐺𝐸,𝑡 as independent variables. 

Table 3 presents the regression results. The results highlight three notable characteristics. First, 

returns tend to influence hashrates more significantly than vice versa when the magnitude of returns is 

significant. At the 5th percentile, at which 𝑅𝐿𝑇𝐶,𝑡 tends to be negative and 𝑅𝐷𝑂𝐺𝐸,𝑡 tends to be positive, 

the expected value of NDC increases when 𝑅𝐷𝑂𝐺𝐸,𝑡 increases and 𝑅𝐿𝑇𝐶,𝑡 decreases. In contrast, at the 

95th percentile, at which 𝑅𝐿𝑇𝐶,𝑡 tends to be positive and 𝑅𝐷𝑂𝐺𝐸,𝑡 tends to be negative, the opposite is 

the case. This tendency implies that abrupt cryptocurrency price movements may affect miners’ 

decisions. Second, the effect of the overall hashrate growth rate on NDC is insignificant regardless of 

the percentile, while the coefficient estimates for the individual cryptocurrency returns are statistically 

significant for all cases. The difference in significance suggests that the NDC is more closely related to 

returns than hashrate growth rates.  

 

[Table 3 about here] 
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To examine the asymmetry in the relationship between NDC and returns in more detail and determine 

whether the relationship is affected by FOMO, we next conduct another set of OLS estimations while 

controlling for extreme dynamics with a different approach. Instead of conducting OLS estimations for 

the 5th and 95th Q-VAR percentiles, we estimate OLS models only for the 50th Q-VAR percentile while 

employing dummy variables for extreme hashrate growth rates and returns. 𝑅𝐿𝑇𝐶5,𝑡  and 𝑅𝐷𝑂𝐺𝐸5,𝑡 

have a value of one if the LTC and DOGE returns are at their 5th percentile or below on day 𝑡 , 

respectively, and zero otherwise. Similarly, 𝑅𝐿𝑇𝐶95,𝑡 and 𝑅𝐷𝑂𝐺𝐸95,𝑡 have a value of one if the LTC 

and DOGE returns are at their 95th percentile or above on day 𝑡, respectively, and zero otherwise. We 

also construct dummy variables for the first principal component of hashrate growth rates, 𝐻𝑃𝐶5,𝑡, and 

𝐻𝑃𝐶95,𝑡 in a similar way to control for abrupt fluctuations in hashrate growth rates. As in Table 3, we 

also consider 𝐻𝑃𝐶,𝑡 , 𝑅𝐿𝑇𝐶,𝑡 , and 𝑅𝐷𝑂𝐺𝐸,𝑡  as independent variables to control for both the linear 

relationship and the additional effect of extreme hashrate growth and return fluctuations. 

Table 4 presents the regression results. The table demonstrates three interesting features. First, the 

relationship between NDC and DOGE returns is significantly stronger when there are abrupt surges in 

DOGE price. The magnitude and sign of coefficient estimates for 𝑅𝐷𝑂𝐺𝐸95,𝑡  suggest that 𝑅𝐷𝐼𝐹𝐹,𝑡 

influences 𝐻𝐷𝐼𝐹𝐹,𝑡  more strongly than what is estimated by the linear function of 𝑅𝐷𝑂𝐺𝐸,𝑡  when 

𝑅𝐷𝑂𝐺𝐸95,𝑡 = 1. Although the coefficient estimate for 𝑅𝐷𝑂𝐺𝐸5,𝑡 implies that the relationship between 

𝑅𝐷𝑂𝐺𝐸,𝑡 and NDC is U-shaped, consistent with Table 3, the overall estimation results suggest that, when 

𝑅𝐷𝑂𝐺𝐸5,𝑡 = 1 , 𝑅𝐷𝐼𝐹𝐹,𝑡  does not influence 𝐻𝐷𝐼𝐹𝐹,𝑡  as strongly as when 𝑅𝐷𝑂𝐺𝐸95,𝑡 = 1 . This 

asymmetric relationship demonstrates a possibility that FOMO affects mining decisions, thereby 

making miners show herding-like behavior of committing more mining resources following abruptly 

high returns. Second, the relationship between NDC and 𝑅𝐿𝑇𝐶,𝑡 is surprisingly different from the one 

between NDC and 𝑅𝐷𝑂𝐺𝐸,𝑡 . The significantly negative coefficient estimate for 𝑅𝐿𝑇𝐶,𝑡  and the 

relatively small coefficient estimate for 𝑅𝐿𝑇𝐶95,𝑡 suggest that significant LTC returns are not likely to 

influence the relationship between LTC returns and mining decisions. This result can be interpreted as 

another evidence of FOMO affecting mining decisions because the result demonstrates that the price 

surges in a ‘memecoin’ make miners follow but LTC, the non-memecoin, does not reveal such influence. 

Third, the hashrate growth rate is not significantly related to NDC, which is consistent with Table 3. 

This irrelevance again implies that the interrelation between returns and mining decisions is mostly due 

to return dynamics, not changes in mining decisions. 

 

[Table 4 about here] 

 

Overall, the empirical results suggest that the LTC-DOGE miners adjust their mining decisions 
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following return dynamics, particularly when there are surges in DOGE price. Furthermore, the 

significant influence of large price fluctuations, which is asymmetric so that miners react more 

sensitively to price surges than drops, suggests that FOMO is one of the factors behind the herding-like 

mining decisions.  

 

4.2. Connectedness between hashrate growth difference and individual returns 

Although the NDC between hashrate growth and return differences demonstrates the overall 

influence across returns and mining decisions, further investigations are required to determine how each 

cryptocurrency is interrelated with the miners’ decision-making process, as proxied by the hashrate 

growth difference. Since DOGE has started attracting much more attention from cryptocurrency traders 

in recent years, whereas LTC has a longer and more stable history, there may be noteworthy patterns 

regarding how the returns of LTC and DOGE individually affect mining decisions over time. Hence, 

we conduct another Q-VAR connectedness estimation for three dependent variables, which are 𝑅𝐿𝑇𝐶,𝑡, 

𝑅𝐷𝑂𝐺𝐸,𝑡 , and 𝐻𝐷𝐼𝐹𝐹,𝑡 . After the connectedness estimation, we calculate the NDC for two pairs of 

dependent variables: (𝑅𝐿𝑇𝐶,𝑡, 𝐻𝐷𝐼𝐹𝐹,𝑡) and (𝑅𝐷𝑂𝐺𝐸,𝑡, 𝐻𝐷𝐼𝐹𝐹,𝑡). Since we select two dependent variables 

out of three for each pair, we refer to the connectedness measure as net pairwise directional 

connectedness (NPDC), following Chatziantoniou, Abakah, Gabauer, and Tiwari (2021). A comparison 

of the NPDCs for the two pairs enables an examination of how individual cryptocurrency returns 

interact with mining decisions, particularly during periods of abnormally high returns. 

Figure 3 illustrates the NPDC estimation results for each cryptocurrency return, presenting three 

interesting features. First, no deterministic influential hierarchy is found between individual 

cryptocurrency returns and hashrate differences. The direction of net directional connectedness varies 

across different periods and quantiles, consistent with Figure 2. Second, the significant influence of 

returns on hashrate differences during return peaks is not simultaneously observed in both 

cryptocurrencies but alternates between them. Among the three periods in which there is a notable 

increase in NDC in Figure 2, the first two are accompanied by comparable increases in NPDC for the 

(𝑅𝐿𝑇𝐶,𝑡, 𝐻𝐷𝐼𝐹𝐹,𝑡) pair, whereas the last one coincides with a surge in NPDC for the (𝑅𝐷𝑂𝐺𝐸,𝑡, 𝐻𝐷𝐼𝐹𝐹,𝑡) 

pair. A possible explanation is that the cryptocurrency that ignites FOMO changes over time. During 

the 2016 and 2018 return peaks, LTC was a hotter issue in the cryptocurrency market, while traders’ 

attention on DOGE was still premature. In 2021, however, DOGE was gathering much more attention 

due to events such as propagation by Elon Musk. Under these circumstances, high LTC returns could 

significantly affect mining decisions in 2016 and 2018, whereas high DOGE returns may have 

influenced miners in 2021. Third, NPDCs slightly tend to be positive (negative) when returns are 

significantly positive (negative). In both panels in Figure 3, the heat maps tend to be red-colored for the 
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highest quantiles but blue-colored for the lowest quantiles. This asymmetric pattern supports the 

hypothesis that FOMO-induced hypes make miners follow the high returns. 

 

[Figure 3 about here] 

 

As in Section 4.1, we next examine the factors of the interrelationship between returns and hashrates 

in more detail by estimating OLS models, employing NPDC as the dependent variable and individual 

returns and hashrates as independent variables. Table 5 summarizes the regression results. The results 

present three noteworthy findings. First, similar to Table 3, high individual cryptocurrency returns make 

the returns influence mining decisions more strongly. This result supports the finding in Section 4.1 that 

miners tend to follow high returns. Second, compared to Table 3, the asymmetry in the magnitude of 

coefficient estimates across quantiles is more evident, particularly for DOGE, backing the idea that the 

effect of returns on the relationship between returns and mining decisions is asymmetric due to FOMO. 

Third, being different from Table 3, 𝐻𝑃𝐶,𝑡 is found to be significantly related to NPDC, suggesting that 

adding or removing mining resources committed to a cryptocurrency may affect the interaction between 

returns and mining decisions. The significantly positive coefficient estimate for 𝐻𝑃𝐶,𝑡  at the 95th 

percentile for LTC suggests that opportunistic newcomers in the mining pool can be more sensitive to 

returns. 

 

[Table 5 about here] 

 

Finally, we further investigate the asymmetry in the relationship between NPDC and returns by 

estimating another set of OLS models, which include dummy variables for heavy hashrate growth rate 

and return fluctuations as independent variables, as in Table 4. Table 6 demonstrates the regression 

results, which reveal two notable features. First, the results further support the idea that the asymmetric 

relationship between NDC and 𝑅𝐷𝐼𝐹𝐹,𝑡  in Section 4.1 mostly stems from 𝑅𝐷𝑂𝐺𝐸,𝑡  rather than and 

𝑅𝐿𝑇𝐶,𝑡, consistent with Table 4. Even when we control for the linear factors 𝐻𝑃𝐶,𝑡, 𝑅𝐿𝑇𝐶,𝑡, and 𝑅𝐷𝑂𝐺𝐸,𝑡 

in Columns (2) and (4), the gap between the magnitude of coefficient estimates for 𝑅𝐷𝑂𝐺𝐸5,𝑡  and 

𝑅𝐷𝑂𝐺𝐸95,𝑡 is more significant when compared to the corresponding columns in Table 4. This asymmetry 

provides evidence that FOMO affects mining decisions and makes miners follow high returns. Second, 

consistent with Table 5 but inconsistent with Table 4, the hashrate growth rate is significantly related to 

NPDC, particularly with abrupt changes in hashrates. The significant but complex relationship between 

NPDC and hashrate growth rate suggests a need to examine the relationship between hashrate growth 

and mining decisions in more detail. 

 

[Table 6 about here] 
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In summary, the results in this section provide evidence that FOMO may influence cryptocurrency 

miners, making them re-optimize their mining resources while actively following return dynamics. This 

tendency intensifies particularly when the DOGE price exhibits an abrupt increase, and this asymmetry 

suggests that FOMO is the reason why miners can make herding-like mining decisions. In contrast, 

surges in LTC prices do not tend to induce such behavior from miners, implying that memecoins such 

as DOGE can have more influence on miners when their prices demonstrate explosive movements. 

 

4.3. Subperiod analysis 

In Section 4.2, Figure 3 demonstrates that the significant influence of returns on mining decisions 

during return peaks is not simultaneously observed in both cryptocurrencies but alternates between them. 

The figure suggests that, among the three return peaks with a notable increase in NDC, the first two are 

primarily driven by LTC returns, whereas the last one follows DOGE returns. The difference in the 

primary driver implies that the relationship between returns and hashrates may change over time. Thus, 

we conduct a subperiod analysis to investigate whether the relationship between NDC and other 

variables differs significantly across subperiods. 

To define subperiods that meet the objective of this study, we approximate the degree of 

cryptocurrency traders’ attention to each cryptocurrency, which can be regarded as a prerequisite for 

FOMO, by employing the number of tweets for LTC and DOGE as proxies. This choice is based on the 

fact that the number of tweets is used in finance literature as a proxy for investor attention (Benedetti 

and Kostovetsky, 2021; Cookson, Lu, Mullins, and Niessner, 2024) and the virality of returns (Chen 

and Hwang, 2022). We retrieve the daily number of tweets for the two cryptocurrencies from 

BitInfoCharts. Figure 4 illustrates the time-series dynamics of the daily tweet counts for each 

cryptocurrency as well as their log-ratio, revealing two noteworthy characteristics. First, the tweet 

counts for LTC and DOGE show evident peaks at different points in time. The number of LTC-related 

tweets surges at the beginning of 2018, while the number of tweets about DOGE shows a tremendously 

high peak at the beginning of 2021. Interestingly, both peaks coincide with the periods highlighted in 

Figure 3. Second, with the two peaks, the time-series dynamics of the daily tweets log-ratio can be 

divided into three phases: the first subperiod with a negative ratio from January 2015 to the beginning 

of 2017, the second subperiod with a positive ratio from 2017 to the beginning of 2021, and the last 

subperiod with a negative ratio. The alternating signs imply that LTC gathered more trader attention 

than DOGE until 2017, but then DOGE retook popularity in 2021. 

 

[Figure 4 about here] 
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Given the characteristics in Figure 4, we define subperiods based on the dates of structural breaks in 

the number of daily tweets for the two cryptocurrencies. We assume that there is a single break for each 

cryptocurrency and locate the breakpoints by employing the Bai-Perron approach using the R package 

‘strucchange’.2 The structural break analysis indicates that the breakpoints for the amounts of LTC and 

DOGE are June 2, 2017, and January 27, 2021, respectively, which are dates closely related to the peaks 

in the daily tweet counts. Based on this result, we define the three subperiods as follows: January 1, 

2015, to June 1, 2017; June 2, 2017, to January 26, 2021; and January 27, 2021, to March 31, 2024. For 

each subperiod, we estimate the regression model used in Tables 4 and 6 to investigate whether the 

relationship between NDC and related variables changes across subperiods. For brevity, we only 

consider the extended model, which includes dummy variables for HPC,t, RLTC,t and RDOGE,t, as well as 

HPC,t, RLTC,t, and RDOGE,t as independent variables.  

Table 7 presents the regression results, which demonstrate three notable features. First, the 

significantly asymmetric relationship between NDC and RDOGE,t is mostly attributable to the last 

subperiod, which is the period after traders’ attention to DOGE exploded in January 2021. The 

coefficient estimate for 𝑅𝐷𝑂𝐺𝐸95,𝑡  is significantly positive in Subperiod #3 but insignificant in 

Subperiod #2 and significantly negative in Subperiod #1. Furthermore, the coefficient estimate for the 

linear term 𝑅𝐷𝑂𝐺𝐸,𝑡 is significant for Subperiods #1 and #2 but loses its significance in Subperiod #3, 

implying that the relationship between NDC and RDOGE,t has become more nonlinear in recent periods. 

These dynamics suggest that the FOMO towards surges in DOGE price has evolved over the sample 

period and has become significant only recently. Second, the evidence of asymmetry in the relationship 

between NDC and RLTC,t is weaker for all sample periods, which is consistent with Tables 4 and 6. Third, 

hashrate growth rate, HPC,t, does not reveal any significant relationship with NDC for all sample periods, 

implying that hashrate growth is not a major determinant of the interaction between returns and mining 

decisions, as shown in Section 4.1. 

 

[Table 7 about here] 

 

The results of the subperiod analysis again suggest that the herding-like mining decisions of LTC-

DOGE miners are attributable to the FOMO towards significant DOGE returns. The results also imply 

that the influence of FOMO has been particularly intense in the recent period, especially since the 

sudden increase in traders’ attention to DOGE in 2021. These findings further support the idea that 

FOMO can be contagious among cryptocurrency miners, particularly if an intense FOMO is ignited in 

the market following huge increases in prices and traders’ attention. 

 
2 https://cran.r-project.org/web/packages/strucchange 

https://cran.r-project.org/web/packages/strucchange
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4.4. NDC and NPDC as functions of Q-VAR quantile 

The arguments in the sections above heavily rely on the findings regarding the asymmetry in the 

relationship among the variables. We demonstrate that significant DOGE returns influence mining 

decisions more than significant LTC returns do, and positive DOGE returns influence affect miners 

more than negative DOGE returns do. We can further verify these asymmetric patterns by regarding 

NDC and NPDC as functions of the Q-VAR quantile. If we express NDC as a function of the Q-VAR 

quantile, a negative slope will indicate that NDCs are higher when DOGE returns are larger than LTC 

returns, which suggests that large DOGE returns affect miners more than large LTC returns do. Hence, 

the negative slope can be regarded as evidence that miners are more affected by meme coin returns, 

which are more likely to induce FOMO. Furthermore, if we define NPDC as a function of the Q-VAR 

quantile, a positive slope can be interpreted as a sign that NPDCs are larger when cryptocurrency returns 

are significantly positive, implying that positive returns influence mining decisions more than negative 

returns, which is a signal that there is a FOMO towards significantly positive returns behind the 

influence. Hence, if there exists statistical evidence that NDC and NPDC are negatively and positively 

sloped functions of the Q-VAR quantile, respectively, the evidence will again support the idea that 

FOMO affects miners. 

Based on this idea, we conduct daily OLS regressions of NDC and NPDC on the Q-VAR quantile to 

investigate whether there exist slopes as expected. For the regressions, we first consider the following 

model: 

 (𝑁𝐷𝐶) or (𝑁𝑃𝐷𝐶) = 𝛼 + 𝛽 ∙ (𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒) + 𝜀, (12) 

where 𝛽 can be interpreted as the slope coefficient. Hence, once we estimate the daily 𝛽 for the entire 

sample period, we conduct a 𝑡 -test to determine whether 𝛽  is significantly different from zero. 

Additionally, we estimate the following quadratic model to determine whether the relationship between 

NPDC and cryptocurrency returns is nonlinear: 

 (𝑁𝑃𝐷𝐶) = 𝛼 + 𝛽0 ∙ (𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒) + 𝛽1 ∙ (𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒)2 + 𝜀, (13) 

from which we take 𝛽1  as the curvature coefficient. A significantly positive estimate for 𝛽1  will 

indicate that the influence of cryptocurrency returns on mining decisions is significantly larger for 

higher quantiles, which can be another evidence of the impact of FOMO on miners. Figure 5 

demonstrates the time-series dynamics of 𝛽 and 𝛽1 for NDC and NPDCs. 

 

[Figure 5 about here] 

 

Table 8 presents the 𝑡-test results for the slop and curvature coefficient estimates, highlighting four 

noteworthy characteristics. First, the slope coefficient 𝛽 is significnatly negative for NDC, indicating 
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that NDCs are higher when DOGE returns surpass LTC returns. This negative slope suggests that 

substantial DOGE returns influence miners more than substantial LTC returns. Second, the slope 

coefficient 𝛽 is significnatly positive for NPDCs, indicating that positive returns have a greater impact 

on mining decisions than negative returns. Third, the curvature coefficient 𝛽1 is significnatly positive 

for NPDCs, implying that the effect of cryptocurrency returns on mining decisions is more pronounced 

at higher quantiles. Fourth, the signs of the slope and curvature coefficient estimates remain mostly 

consistent across subperiods, especially for Subperiods #2 and #3. However, the signs differ for some 

models in Subperiod #1, suggesting that the impact of FOMO on mining decisions became significant 

after cryptocurrencies attracted attention from a larger group of traders. 

 

[Table 8 about here] 

 

Overall, the slope and curvature coefficient estimates suggest that asymmetric relationships among 

NDC, NPDC, and quantile exist as explained above. The asymmetric relationships imply that the 

FOMO from the DOGE market influences mining decisions, particularly when DOGE returns are 

significantly high. Along with the empirical results in previous sections, the relationships serve as 

evidence that FOMO can induce herding-like behavior in cryptocurrency miners. 

 

5. Conclusion 

This study explores the relationship between collective mining decisions in the LTC-DOGE market 

and the corresponding cryptocurrency returns. We utilize the quantile vector autoregressive time-

frequency connectedness approach to analyze the connections between cryptocurrency returns and 

hashrates, using hashrates as a proxy for mining decisions. The findings indicate that DOGE returns 

can have a significant impact on mining decisions during sudden price surges, suggesting that the 

FOMO effect in the cryptocurrency market can influence miners. In contrast, hashrates do not respond 

similarly to LTC returns, indicating that not all cryptocurrencies trigger a FOMO effect.  

We present three promising avenues for future research. First, the FOMO effect, which may influence 

cryptocurrency miners even when no additional investment is required, could be further explored to 

understand how the level of additional investment changes this influence. If it can be empirically 

demonstrated that cryptocurrency miners may purchase or replace their hardware, to some extent, 

following significantly high returns, this behavior could serve as more robust evidence of the FOMO 

effect on miners. Second, it would be of great significance if future research could ascertain whether 

the FOMO effect can delay miners’ selling activities. While this study examines the relationship 

between returns and mining activities, we do not provide evidence that returns also influence the trading 

activities of miners. Therefore, future research could bridge this gap by investigating the relationship 
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between returns and miners’ sell volume. Third, as suggested in Section 4.2, the relationship between 

hashrate growth and mining decisions presents a rich area for further investigation. 
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Figure 1. Time-series dynamics of LTC-DOGE hashrate and 30-day returns 

Note. This figure depicts the time-series dynamics of 30-day hashrate log growth rate, H, and 30-day 

returns, R, for Litecoin (LTC) and Dogecoin (DOGE), as well as their differences, during the sample 

period from January 2015 to March 2024. Panel A illustrates the dynamics of the 30-day hashrate log 

growth rate of two cryptocurrencies, as well as their difference. Panel B depicts time-series dynamics 

of the 30-day cumulative log-returns and their differences. 

Panel A. 30-day hashrate log growth rate H 

HLTC,t and HDOGE,t HDIFF,t 

  
 

Panel B. 30-day log-returns R 

RLTC,t and RDOGE,t RDIFF,t 
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Figure 2. Net directional connectedness between LTC-DOGE hashrate growth and return 

Note. This figure depicts the net directional connectedness (NDC) indices between 30-day hashrate log 

growth rate difference, HDIFF,t, and 30-day log return difference, RDIFF,t, for different quantiles during 

the sample period from January 2015 to March 2024. NDC is estimated following the net pairwise 

directional connectedness estimation procedure of Chatziantoniou, Abakah, Gabauer, and Tiwari (2021). 

Positve (negative) value of NDC means RDIFF have more (less) significant influence on HDIFF than vice 

versa. Panel A illustrates the overall dynamics of NDC over time and quantiles. Panel B–D depicts the 

time-series dynamics of NDC for the 5th, 50th, and 95th percentiles, respectively. 

Panel A. All quantiles, matched with 30-day DOGE and LTC returns 
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Panel B. 5th percentile 

 
Panel C. 50th percentile 

 
Panel D. 95th percentile 
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Figure 3. Net pairwise directional connectedness between hashrate growth difference and 

individual cryptocurrency returns 

Note. This figure depicts the net pairwise directional connectedness (NPDC) indices among three 

dependent variables, which are 30-day hashrate log growth rate difference, HDIFF,t, and 30-day log return 

of LTC and DOGE, RLTC,t and RDOGE,t, respectively, for different quantiles during the sample period from 

January 2015 to March 2024. NPDC is estimated following the estimation procedure of Chatziantoniou, 

Abakah, Gabauer, and Tiwari (2021). Positve (negative) value of NPDC means R have more (less) 

significant influence on H than vice versa. Panels A and B illustrates the overall dynamics of NPDC 

over time and quantiles for LTC and DOGE, respectively. 

Panel A. NPDC between RLTC,t and HDIFF,t 

 
Panel B. NPDC between RDOGE,t and HDIFF,t 
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Figure 4. Daily amounts of cryptocurrency-related tweets 

Note. This figure illustrates the daily amounts of tweets that are related to the cryptocurrencies employed 

in this study. Panels A and B demonstrate the daily amounts of LTC- and DOGE-related tweets, 

respectively. Panel C shows the time-series dynamics of the daily log-ratio, ln[(# of LTC-related 

tweets)/(# of DOGE-related tweets)].  

Panel A. Daily amount of LTC-related tweets (in thousands) 

 
Panel B. Daily amount of DOGE-related tweets (in thousands) 

 
Panel C. Daily log-ratio 
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Figure 5. Slope and curvature of NDC and NPDC with respect to quantile 

Note. This figure illustrates the time-series dynamics of the slope and curvature coefficient estimates of 

NDC and NPDC with respect to quantile, which are estimated with two OLS models regressions on a 

daily basis: (𝑁𝐷𝐶) or (𝑁𝑃𝐷𝐶) = 𝛼 + 𝛽 ∙ (𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒) + 𝜀  and (𝑁𝑃𝐷𝐶) = 𝛼 + 𝛽0 ∙ (𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒) +

𝛽1 ∙ (𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒)2 + 𝜀. For the first and second models, we plot the coefficient estimate for 𝛽 and 𝛽1, 

respectively.   

Panel A. Slope coeffecient 𝛽 for (𝑁𝐷𝐶) or (𝑁𝑃𝐷𝐶) = 𝛼 + 𝛽 ∙ (𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒) + 𝜀 

NDC(RDIFF,t, HDIFF,t) NPDC(RLTC,t, HDIFF,t) 

  
 NPDC(RDOGE,t, HDIFF,t)  

 

 

 

 

Panel B. Curvature cofficient 𝛽1 for (𝑁𝑃𝐷𝐶) = 𝛼 + 𝛽0 ∙ (𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒) + 𝛽1 ∙ (𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒)2 + 𝜀 

NPDC(RLTC,t, HDIFF,t) NPDC(RDOGE,t, HDIFF,t) 
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Table 1. Summary statistics 

Note. This table presents summary statistics of the 30-day hashrate log growth rates, H, and 30-day log 

returns, R, for two cryptocurrencies, Litecoin (LTC) and Dogecoin (DOGE), covering a 111-month 

period from January 2015 to March 2024.   

 30-day hashrate log growth rate H 30-day log return R 

HLTC,t HDOGE,t HDIFF,t RLTC,t RDOGE,t RDIFF,t 

Mean 0.06  0.06  0.00  0.03  0.06  -0.03  

Median 0.05  0.05  0.00  0.01  -0.01  0.00  

Maximum 1.29  1.04  0.36  1.60  2.40  1.14  

Minimum -0.79  -0.63  -0.41  -0.90  -1.51  -2.31  

Std. dev. 0.20  0.19  0.07  0.30  0.41  0.33  

Skewness 1.04  0.80  0.18  0.90  1.95  -1.97  

Kurtosis 5.57  3.93  1.65  3.36  6.40  8.25  

# of obs. 3,378  3,378  3,378  3,378  3,378  3,378  
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Table 2. Correlation matrix 

Note. This table presents a correlation matrix of the variables employed in our study. 

 30-day hashrate log growth rate 30-day log return 

HLTC,t HDOGE,t HDIFF,t RLTC,t RDOGE,t RDIFF,t 

30-day 

hashrate 

log growth 

rate 

HLTC,t 1.000       

HDOGE,t 0.927  1.000      

HDIFF,t 0.306  -0.072  1.000     

30-day 

log 

return 

RLTC,t 0.469  0.437  0.139  1.000    

RDOGE,t 0.287  0.290  0.026  0.605  1.000   

RDIFF,t 0.067  0.034  0.092  0.151  -0.696  1.000  
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Table 3. Relationship between net directional connectedness and relevant variables 

Note. This table reports the regression result of the net directional connectedness indices between HDIFF,t 

and RDIFF,t on HPC,t, RLTC,t, and RDOGE,t for the 5th, 50th, and 95th percentiles, where HPC,t is the first 

principal component of HLTC,t and HDOGE,t. The Huber-White sandwich estimator is employed to estimate 

standard errors and, therefore, unadjusted R2 is reported. There are 3,180 observations in the sample. 
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.  
 5th percentile 50th percentile 95th percentile 

HPC,t 0.295  
 

-0.019 
 

0.094  
 

 (1.36) 
 

(-0.31) 
 

(0.55) 
 

RLTC,t -4.335  *** -1.848  *** 3.536  *** 

 (-3.41) 
 

(-5.21) 
 

(3.42) 
 

RDOGE,t 4.906  *** 2.273  *** -7.269  *** 

 (4.31) 
 

(6.66) 
 

(-8.38) 
 

Constant 11.331  *** 1.519  *** -2.180  *** 

 (46.35) 
 

(26.93) 
 

(-11.85) 
 

R2 0.015  
 

0.048  
 

0.053  
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Table 4. Relationship between net directional connectedness and dummy variables 

Note. This table reports the regression result of the net directional connectedness indices between HDIFF,t 

and RDIFF,t on dummy variables regarding HPC,t, RLTC,t and RDOGE,t for the 50th percentile, where HPC,t is 

the first principal component of HLTC,t and HDOGE,t. 5 (95) in subscripts indicate that the dummy variable 

have the value of one if the value of the relevant variable is equal to the 5th percentile or less (95th 

percentile or more). Only the dummy variables are included as independent variables in Column (1), 

and HPC,t, RLTC,t, and RDOGE,t are additionally controlled for in Column (2). The Huber-White sandwich 

estimator is employed to estimate standard errors and, therefore, unadjusted R2 is reported. There are 

3,180 observations in the sample. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% 

levels, respectively.  
 (1) (2) 

HPC5,t 0.133 
 

-0.014  

 (0.41) 
 

(-0.04)  

HPC95,t 0.008 
 

0.051  

 (0.02) 
 

(0.14)  

RLTC5,t -0.122 
 

-0.828 ** 

 (-0.46) 
 

(-2.59)  

RDOGE5,t 0.722 ** 1.215 *** 

 (2.58) 
 

(3.65)  

RLTC95,t -0.368 
 

0.835 * 

 (-0.95) 
 

(1.91)  

RDOGE95,t 3.783 *** 2.210 *** 

 (6.45) 
 

(3.24)  

HPC,t   -0.038  

   (-0.52)  

RLTC,t   -2.111 *** 

   (-5.14)  

RDOGE,t   1.487 *** 

   (3.73)  

Constant 1.400 *** 1.402 *** 

 (22.25) 
 

(22.50)  

R2 0.054 
 

0.068  
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Table 5. Relationship between net partial directional connectedness and relevant variables 

Note. This table reports the regression result of the net pairwise directional connectedness (NPDC) 

between HDIFF,t and either RLTC,t or RDOGE,t on HPC,t, RLTC,t, and RDOGE,t for the 5th, 50th, and 95th percentiles, 

where HPC,t is the first principal component of HLTC,t and HDOGE,t. The Huber-White sandwich estimator 

is employed to estimate standard errors and, therefore, unadjusted R2 is reported. There are 3,180 

observations in the sample. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, 

respectively.  

 
NPDC between RLTC and HDIFF NPDC between RDOGE and HDIFF 

5th percentile 50th percentile 95th percentile 5th percentile 50th percentile 95th percentile 

HPC,t -0.104 
 

0.747 *** 1.220  *** -0.080  -0.232 *** 0.050   

 (-1.54) 
 

(9.15) 
 

(10.77)  (-1.08)  (-4.89)  (0.34)  

RLTC,t -2.607 *** -2.951  *** 3.521  *** -1.239 *** -1.050  *** -1.771   

 (-5.96) 
 

(-6.36) 
 

(4.74)  (-2.91)  (-2.79)  (-1.47)  

RDOGE,t 0.266 
 

-1.686  *** -1.985  *** -2.010 *** 2.738  *** 7.050  *** 

 (0.96) 
 

(-6.17) 
 

(-3.69)  (-8.61)  (8.09)  (8.01)  

Constant 2.800 *** 2.614  *** 2.614  *** 1.656 *** 0.269  *** 3.229  *** 

 (33.27) 
 

(24.56) 
 

(20.13)  (17.63)  (4.59)  (16.42)  

R2 0.027 
 

0.051  
 

0.072   0.046  0.065   0.052   
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Table 6. Relationship between net pairwise directional connectedness and dummy variables 

Note. This table reports the regression result of the net directional connectedness indices between HDIFF,t 

and either RLTC,t or RDOGE,t on dummy variables regarding HPC,t, RLTC,t and RDOGE,t for the 50th percentile, 

where HPC,t is the first principal component of HLTC,t and HDOGE,t. 5 (95) in subscripts indicate that the 

dummy variable have the value of one if the value of the relevant variable is equal to the 5th percentile 

or less (95th percentile or more). Only the dummy variables are included as independent variables in 

Columns (1) and (3), and HPC,t, RLTC,t, and RDOGE,t are additionally controlled for in Columns (2) and (4). 

The Huber-White sandwich estimator is employed to estimate standard errors and, therefore, unadjusted 

R2 is reported. There are 3,180 observations in the sample. ***, **, and * indicate statistical significance 

at the 1%, 5%, and 10% levels, respectively.  

 
NPDC between RLTC and HDIFF NPDC between RDOGE and HDIFF 

(1) (2) (3) (4) 

HPC5,t -3.064 *** -1.026 ** 1.444 *** 1.225 *** 

 (-11.12) 
 

(-2.12)  (7.59)  (4.31)  

HPC95,t 1.055 ** -1.222 * -3.300 *** -2.917 *** 

 (2.30) 
 

(-1.83)  (-6.43)  (-5.55)  

RLTC5,t 1.770 *** 0.201  0.149  0.011  

 (3.30) 
 

(0.36)  (0.87)  (0.05)  

RDOGE5,t 0.589 
 

-0.718  0.525 *** 0.856 *** 

 (1.04) 
 

(-1.28)  (2.97)  (3.27)  

RLTC95,t -0.905 ** 1.100 ** 1.591 ** 1.846 *** 

 (-2.15) 
 

(2.02)  (2.54)  (2.67)  

RDOGE95,t -3.485 *** -2.143 *** 5.726 *** 4.845 *** 

 (-8.15) 
 

(-3.24)  (8.16)  (4.53)  

HPC,t   0.818 ***   -0.074  

   (5.71)    (-0.97)  

RLTC,t   -3.589 ***   -0.595  

   (-6.21)    (-1.39)  

RDOGE,t   -0.900 **   0.765  

   (-2.14)    (1.48)  

Constant 2.627 *** 2.774 *** 0.101  0.085  

 (22.03) 
 

(22.98)  (1.55)  (1.34)  

R2 0.033 
 

0.059  0.118  0.120  
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Table 7. Net directional connectedness and dummy variables: Subperiod analysis 

Note. This table reports the regression result of the net directional connectedness indices between HDIFF,t 

and RDIFF,t on dummy variables regarding HPC,t, RLTC,t and RDOGE,t for the 50th percentile, where HPC,t is 

the first principal component of HLTC,t and HDOGE,t, for three subperiods. We define subperiods based on 

the point of structural break for the amount of daily LTC- and DOGE-related tweets. We assume that 

there is one structural break point for each cryptocurrency, so that there are two points in total. The three 

subperiods are defined as [January 18, 2015 to June 1, 2017], [June 2, 2017 to January 26, 2021], and 

[January 27, 2021 to March 31, 2024], respectively. 5 (95) in subscripts indicate that the dummy 

variable have the value of one if the value of the relevant variable is equal to the 5th percentile or less 

(95th percentile or more). HPC,t, RLTC,t, and RDOGE,t are also included as independent variables. The Huber-

White sandwich estimator is employed to estimate standard errors and, therefore, unadjusted R2 is 

reported. There are 3,180 observations in the sample. ***, **, and * indicate statistical significance at the 

1%, 5%, and 10% levels, respectively.  
 Subperiod #1 Subperiod #2 Subperiod #3 

HPC5,t 0.663  -0.261  -0.045  

 (0.80)  (-0.54)  (-0.12)  

HPC95,t -0.539  -0.344  0.440  

 (-0.66)  (-0.65)  (0.96)  

RLTC5,t 1.084  -3.135 *** 0.260  

 (1.48)  (-7.38)  (1.02)  

RDOGE5,t 1.722 ** 1.582 *** -0.454 * 

 (2.46)  (3.22)  (-1.94)  

RLTC95,t -1.417  0.875  -1.886 *** 

 (-1.51)  (1.14)  (-3.27)  

RDOGE95,t -2.054 *** 1.581  3.726 *** 

 (-2.70)  (1.53)  (2.46)  

HPC,t 0.066  -0.046  -0.082  

 (0.45)  (-0.40)  (-0.78)  

RLTC,t 3.029 *** -3.769 *** -1.135  

 (2.85)  (-8.63)  (-1.44)  

RDOGE,t 2.174 ** 2.183 *** 1.220  

 (2.13)  (3.87)  (1.51)  

Constant -0.640 *** 2.834 *** 1.120 *** 

 (-4.34)  (25.76)  (21.14)  

# of observations 685  1,335  1,160  

R2 0.076  0.087  0.228  
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Table 8. t-test for the slope and curvature of NDC and NPDC with respect to quantile 

Note. This table reports the result of the t-tests for the slope and curvature coefficient estimate of NDC 

and NPDC with respect to quantile, which are estimated with two OLS models regressions on a daily 

basis: (𝑁𝐷𝐶) or (𝑁𝑃𝐷𝐶) = 𝛼 + 𝛽 ∙ (𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒) + 𝜀  and (𝑁𝑃𝐷𝐶) = 𝛼 + 𝛽0 ∙ (𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒) + 𝛽1 ∙
(𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒)2 + 𝜀. For the first and second models, we conduct a t-test on 𝛽 and 𝛽1, respectively, to 

determine whether the daily coefficient estimates are statistically different from zero. We conduct t-

tests for the entire period as well as subperiods, which are defined based on the point of structural break 

for the amount of daily LTC- and DOGE-related tweets. We assume that there is one structural break 

point for each cryptocurrency, so that there are two points in total. The three subperiods are defined as 

[January 18, 2015 to June 1, 2017], [June 2, 2017 to January 26, 2021], and [January 27, 2021 to March 

31, 2024], respectively. The Huber-White sandwich estimator is employed to estimate standard errors 

and, therefore, unadjusted R2 is reported. There are 3,180 observations in the sample. ***, **, and * 

indicate statistical significance at the 1%, 5%, and 10% levels, respectively.  

Panel A. Slope coeffecient 𝛽 for (𝑁𝐷𝐶) or (𝑁𝑃𝐷𝐶) = 𝛼 + 𝛽 ∙ (𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒) + 𝜀 
 Entire period Subperiod #1 Subperiod #2 Subperiod #3 

NDC(RDIFF,t, HDIFF,t) -6.098 *** 1.856 *** -9.041 *** -7.409 *** 

 (-24.907)  (3.602)  (-24.069)  (-20.628)  

NPDC(RLTC,t, HDIFF,t) 3.314 *** 5.061 *** 3.620 *** 1.929 *** 

 (28.969)  (19.348)  (18.148)  (14.172)  

NPDC(RDOGE,t, HDIFF,t) 2.860 *** 4.440 *** 0.206  4.980 *** 

 (17.437)  (15.294)  (0.782)  (19.037)  

# of observations 3,180  685  1,335  1,160  

 

Panel B. Curvature cofficient 𝛽1 for (𝑁𝑃𝐷𝐶) = 𝛼 + 𝛽0 ∙ (𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒) + 𝛽1 ∙ (𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒)2 + 𝜀 
 Entire period Subperiod #1 Subperiod #2 Subperiod #3 

NPDC(RLTC,t, HDIFF,t) 7.071 *** -18.725 *** 11.037 *** 17.739 *** 

 (12.910)  (-12.914)  (14.518)  (14.172)  

NPDC(RDOGE,t, HDIFF,t) 13.507 *** 18.162 *** 10.774 *** 13.903 *** 

 (27.885)  (25.863)  (13.571)  (16.175)  

# of observations 3,180  685  1,335  1,160  

 


