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Abstract

Standard liquidity pools must charge relatively large fees to compen-
sate liquidity providers for the impermanent loss. This induces price-
staleness and the large fees tend to make effective AMM prices unattrac-
tive to traders, as better effective prices are typically available on central-
ized exchanges. In an idealized framework, with informed and uninformed
traders, we show that auctioning an exclusive right to be a zero-fee trader
can greatly improve the price efficiency in AMM. Moreover, this novel ap-
proach has the potential to substantially increase the profits of liquidity
pools.
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1 Introduction

Since the introduction of Uniswap in 2020, Automated Market Makers
(AMMs) have become a significant part of the cryptocurrency trading
landscape. AMMs rose in popularity because of their ability to facilitate
trades using considerably fewer blockchain resources (i.e. gas) and for
their ability to provide deep liquidity, especially when compared to order
books. However, current AMM systems face several challenges.

First, AMMs struggle making liquidity provision profitable. Changes
in the balances of underlying tokens create Impermanent Loss for liq-
uidity providers, and aggregate trading fees earned by the pool must be
considerable to overcome this loss, as reported by Kim [2023]. Second,
because AMMs are not directly connected to external markets they of-
ten struggle to maintain price synchronization with those markets1. The
cost of trading creates a lag in the AMM price as arbitrageurs will only
place trades in an AMM when their profits are sufficiently large enough
to overcome the cost of transacting (e.g. gas, fees, and slippage). Since
the cost of transacting on an AMM is often larger than on other mar-
kets this reduces trading volume, thereby reducing the amount of fees
collected. This demonstrates a potential negative feedback loop in many
current AMM designs. Profits for Liquidity Providers are a function of
fees overcoming Impermanent Loss. If there is friction for arbitrageurs,
Liquidity Providers experience reduced trading volumes and revenues, and
may leave the pool thereby reducing the future amount of arbitrage.

Ripple’s research team has put forth an innovative solution to address
the inefficiencies seen in AMMs: a continuous auction mechanism designed
to enhance the price responsiveness of AMMs. Specifically, users can
bid LP tokens to hold a slot (Auction Slot Mechanism), which gives the
holder zero-fee trades in the AMM, especially Constant Product Market
Makers(CPMM). This paper delves into the Auction Slot Mechanism and
assesses its cost and benefit to both arbitrageurs and LPs.

In section 2 of the paper we derive the expected profit for monopoly
zero-fee trader. In section 3 we describe the continuous auction mechanism
and derive the equilibrium price for the slot to be a monopoly zero-fee
trader. Finally, in conclusion, we discuss potential shortcomings of the
auction mechanism under more realistic assumptions. In Appendix, we
propose an algorithm to find the the optimal bidding utilizing Monte Carlo
method in Reinforcement Learning.

2 Expected Profit for Monopoly Zero-Fee
Trader

We begin by deriving the expected profit for a zero-fee trader who does
not face competition from other zero-fee traders. Here profit will differ

1Hansen, Kim, and Kimbrough [2022] documents that price formation does not take place
on AMMs and therefore AMMs require arbitrageurs to keep the pool’s price in line with the
true price. Furthermore, the need for arbitrageurs to create price alignment is a design feature
in an AMM system.

2



from the expected profit for a slot holder, because the latter must factor
in the risk of being outbid by a competitor, and thereby losing the slot.
We return to this aspect of auction competition in the last subsection.

A zero-fee trader can realize profit whenever there is a discrepancy
between the marginal price offered by the liquidity pool2 and the best
available price on other platforms. We denote the marginal price by P
and we use P ∗ to introduce a true price. The true price is characterized
by having unpredictable price changes3 and it plays the role of the best
available price. Gaps between the true price and marginal price create
statistical arbitrage for a zero-fee trader.

Price gaps may arise either from movements in the true price or shifts
in the marginal price. We differentiate between these two sources of arbi-
trage profit, calling arbitrage initiated by the shift in true price as volatility
arbitrage (ΠVol) and arbitrage initiated by the shift in the marginal price
as noise trader arbitrage (ΠNT). The sum of the two sources of arbitrage
defines the arbitrage profit, ΠArb = ΠVol +ΠNT.

Let Et denote the expectation conditional on all variables observed at
time t. Then the instantaneous arbitrage profit,

πt ≡ lim
h→0

Et

[
ΠArb

t,t+h

]
h

,

equals

πt = π(Yt, σ
2
t ) = σ2

t
Yt

4
+ λ

ω2

Yt
, (1)

where Yt is the value of numéraire in a liquidity pool at time t, σt is the
volatility of the true price at time t, and λ is the arrival intensity of noise
traders. The two terms on the right hand side of (1), σ2

t Yt/4 and λω2/Yt,
originate from volatility arbitrage and noise trader arbitrage, respectively.

In the following two subsections we derive ΠVol and ΠNT.

2.1 Volatility Arbitrage

Assuming Geometric Brownian Motion (GBM) in the true price P ∗ and
a zero fee for the AMM, Milionis, Moallemi, Roughgarden, and Zhang
[2023b] derive a closed form solution for ΠVol in the absence of noise
traders.4 The term Volatility Arbitrage intuitively represents the source
of the arbitrage profit. The higher volatility is, the greater and more
frequent arbitrage opportunities are, thus greater arbitrage profit. In this
setting, ΠVol is equal to the expected impermanent loss. The formula of

2We call it ”marginal” price because it is the price offered by AMMs for an infinitesimally
small trade. Therefore, the average trade price for an order is the weighted average of the
marginal price.

3Intuitively, the true price may be thought of as a weighted average of prices across all
platforms, where the weights are defined by the extent platforms contribute to price discovery.
More formally, the true price is an unobserved common stochastic trend in all price series that
follow a Brownian semimartingale process.

4They termed ΠVol as ”Loss-Versus-Rebalancing” (LVR), because arbitrageurs rebalance
their portfolio the reserve of the liquidity pool to align it with the true price.
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ΠVol for a CPMM is derived as follows:

ΠVol
t,t+h =

∫ t+h

t

Ys

4
σ2
sds ≃ h

Yt

4
σ2
t ,

see Milionis et al. [2023b] for a detailed proof. The approximation holds
for a sufficiently small h.

A zero-fee right gives the slot holder a significant advantage in the
arbitrage race. This setting is different from Milionis et al. [2023b], who
consider a competitive market with multiple zero-fee agents. We arrive
at the same expression for ΠVol because the competitive structure is not
needed for a monopoly slot holder, who is motivated to eliminate price
gaps continuously.5

It is profitable for a zero-fee arbitrageur to immediately align the
marginal price with the true price without waiting for larger price de-
viations. Under the assumption of GBM, the probability of a price gap
increasing is the same as it is for it decreasing. If the price gap increases
to surpass the fee rate, non-zero fee arbitragers can take profit. Acting
swiftly to align prices minimizes the chance of losing potential profits to
competitors. This proves ΠVol can be effectively employed even under
limited competition.

2.2 Noise Trader Arbitrage

An important component of a market is the service it offers to market
participants, who seek to adjust their portfolio, store/withdraw liquidity,
exchange one currency or asset for another, for a variety of reasons. These
are ”convenience traders”, but the literature commonly designates these
as ”noise traders” because their activities can induce noise in the ”pricing
errors”. Unlike arbitrageurs, noise traders are motivated by aspects other
than minimizing, P − P ∗.

Including noise traders in the analysis is important for several reasons.
First, noise traders influence the profit of arbitrageurs. A zero-fee arbi-
trageur will earn a profit from reverting the price discrepancies in P −P ∗.
Second, noise traders bring revenue to AMMs through fees, which sup-
ports liquidity provision6.

Our analysis concentrates on the lower-bound of profits obtained from
aligning the true price with the marginal price, deliberately excluding
the impact of potentially predatory trading practices by zero-fee traders
(see Conclusion for potential predatory practices). We assume a zero-fee
arbitrageur reverts the marginal price to the true price immediately.

Let qt be a binary variable, such that qt = 1 if a noise trader arrives
at time t. We assume that the arrival times, {qt} follow a Poisson point
process with intensity λ. The distribution of the number of noise traders,

5In the context with noise traders (to be defined in the next section) the transactions of
a monopoly slot holder need not be identical to the aggregate transactions of competitive
zero-fee traders.

6This highlights another important aspect of designing AMMs. High trading fees may
discourage noise traders from using the AMM, while lower trading fees should positively
affect trading volume.
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n, that arrive during the interval of time, [t, t+ h] is

Pr

 ∑
s∈[t,t+h]

qs = n

 =
(λh)n

n!
e−λh for n = 0, 1, . . . .

When a noise trader arrives, they trade kt units of the numéraire, Y ,
for Pkt units of X. So, the total trading volume over the interval of time
[t, t+ h] is given by ∫ t+h

t

|ks|dqs,

and we allow kt to have any symmetric distribution with zero mean and
variance, var(kt) = ω2.

A noise trader changes the reserve of numeráire in the liquidity pool
from Y to Y ′, where k = Y ′ − Y , and the resulting price impact is given
by the Constant Product Market Maker formula (CPMM),

P =
Y

X
7→ P ′ =

Y + k

XY/(Y + k)
=

(Y + k)2

XY
.

From this it follows that

k

Y
= 1− Y ′

Y
= 1−

√
P ′

P
= 1− exp

(
r′

2

)
≃ −1

2
r′, (2)

where r′ = log P ′

P
. This establishes the (logarithmic) price impact

of a noise trade to be proportional to the relative trading volume, k/Y .
Specifically,

r′ = logP ′ − logP = −2
k

Y
+ o

(
k

Y

)
.

An arbitrageur earns profit by reversing the price imbalance in the
pool. For example, if P ′ < P ∗ then the arbitrageur can profit from
buying X from the pool and selling it elsewhere at the higher price P ∗.
The total profit will depend on the price difference and the quantity that
can be traded until the marginal price is aligned with P ∗. The average
purchase price will be between P ′ and P ∗, as a result of ”slippage”. The
arbitrageur’s profit is given by

Π(P ′, P ∗) =

∫ P∗

P ′
(P ∗ − p)q(p)dp,

where∫ P∗

P ′ q(p)dp = X ′ −X∗,
is the total quantity of X that the arbitrageur withdraws from pool.

From the constant product rule, we can use this to infer that

q(p) =
L

2
p−3/2,

since
∫ P∗

P ′ q(p)dp = X ′ −X∗ equals

√
X ′Y ′√

Y ′
X′

−
√
X∗Y ∗√

Y ∗
X∗

= L

(
1√
P ′

− 1√
P ∗

)
=

∫ P∗

P ′

L

2
p−3/2dp. (3)
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Using the expression for q(p) we find that

Π(P ′, P ∗) =

∫ P∗

P ′
(P ∗ − p)q(p)dp (4)

=
LP ∗

2

∫ P∗

P ′
p−3/2dp− L

2

∫ P∗

P ′
p−1/2dp (5)

=
LP ∗

2

[
−2p−1/2

]P∗

P ′
− L

2

[
2p1/2

]P∗

P ′
(6)

= LP ∗
(
− 1√

P ∗
+

1√
P ′

)
− L

(√
P ∗ −

√
P ′
)

(7)

= L

(
−
√
P ∗ +

P ∗
√
P ′

−
√
P ∗ +

√
P ′
)

(8)

= L
√
P ′

(
1− 2

√
P ∗

P ′ +
P ∗

P ′

)
(9)

= Y ′

(
1−

√
P ′

P ∗

)2

= Y ′
(

k

Y ∗

)2

(10)

k

Y ∗ =
Y ∗ − Y ′

Y ∗ = 1− Y ′

Y ∗ = 1− L
√
P ′

L
√
P ∗

= 1−
√

P ′

P ∗ (11)

where the last equality follows from (2). The arbitrageur’s profit from
noise traders is random because the arrival of noise traders is random.
But we are now ready to compute an arbitrageur’s expected profit from
noise traders. Over the interval of time, (t, t+h], the expected profit from
noise traders is given by:

ΠNT
t,t+h ≡ Et

[∫ t+h

t

Y ′
s

(
ks
Y ∗
s

)2

dqs

]
(12)

= Et

[∫ t+h

t

(Y ∗
s − ks)

(
ks
Y ∗
s

)2

dqs

]
(13)

= Et

[∫ t+h

t

Y ∗
s

(
ks
Y ∗
s

)2

dqs

]
(14)

=

∫ t+h

t

Et

[
k2
s

Y ∗
s

]
dqs (15)

=

∫ t+h

t

Et[k
2
s ]Et

[
1

Y ∗
s

]
dqs (16)

=
1

Y ∗
t

ω2

∫ t+h

t

exp

(
1

8

∫ s

t

Et

[
σ2
u

]
du

)
dqs (17)

≈ 1

Y ∗
t

ω2

∫ t+h

t

exp

[
1

8
σ2
t (s− t)

]
dqs (18)

≈ 1

Y ∗
t

ω2hλ
exp

(
σ2
th

8

)
− 1

σ2
t h/8

(19)

≈ 1

Y ∗
t

ω2hλ (20)
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where (14) comes from the symmetric distribution of ks with mean 0, (15)
holds from Fubini’s Theorem, (16) comes from the independence between
ks and Ps, (17) comes from Yt = L

√
Pt and SDE of

√
Pt, and the constant

variance of noise traders’ volume assumption. The approximations (18),
(19), and (20) holds for sufficiently small h.

3 Equilibrium Slot Price

In the previous Section, we derive the expected profit for a monopoly
zero-fee arbitrageur. In this section we take into account the strategic
considerations that arise in the bidding for the slot. Insight about the
equilibrium price is gained by considering a risk-neutral and rational bid-
der for the slot. If the owner is guaranteed to hold the slot until expiration,
24 hours later, then the maximum willingness-to-pay is the expected profit
from owning the slot. This defines an upper bound on the slot price.

However, the expected profit of a slot holder is different from the
expected profit of a zero-fee arbitrageur, because the slot holder can be
outbid prior to the expiration time. In Section 2 we demontstrate that the
expected profit is positively related to volatility and the intensity of noise
trader arrivals. If there is an increase in either of these variables, then the
value of the slot increases. In these situations, it could become profitable
for someone else to outbid the current holder. On the other hand, if the
value of the slot decreases, then the current slot owner is stuck with the
(now less profitable) slot until its expiration. This amounts to the slot
having a short position on a call option that caps the profit of owning the
slot.

At the same time, the slot mechanism discourages bids far below the
true value of the slot. A low purchase price, B, increases the probability of
being outbid before slot expiration, and the arbitrage that can be earned
from the slot decreases as the likelihood of being outbid increases.

To determine the optimal bidding strategy for the auction partici-
pants, we first describe the proposed continuous auction. Next we assume
symmetric perfect information to present the most simplified model for
bidders. 7 Finally, we propose methodologies for a numerical solution for
an optimal bid using a Q-learning algorithm.

3.1 The Proposed Continuous Auction

The Slot Mechanism for the AMM on the XRP Ledger (XRPL) allows
the slot owner to trade with zero fees for 24 hours. The slot owner is

7The arbitrage profit in this system is a function of volatility, which is not directly observ-
able but rather estimated. Therefore, a common value auction with imperfect information
would be more aligned with real-world scenarios. In such a case, even if participants each have
unbiased estimates, the variance in their volatility estimates could lead to bidding below the
actual common value to avoid the winner’s curse. See Krishna [2009] for detailed discussion
about common value auction under various environments. The larger the variance in these
volatility estimates, the greater the gap between the bidding and the common value is likely
to be. This issue can be mitigated if options, volatility swaps, or products like the VIX are
traded in the market. These instruments provide a publicly observable measure of volatility,
offering a common reference point for all participants.
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determined by an auction which has the following rules:

1. Slot ownership can be in one of three states:

(a) Empty: No account owns the slot.

(b) Occupied: An account owns the slot and there is more than 72
minutes until expiration.

(c) Tailing: An account owns the slot and there is less than 72
minutes until expiration.

2. We let t denote time, where a unit of time corresponds to 72 minute
intervals over 24 hours. The age of ownership is represented by the
variable a, where a = 0 at the time ownership is acquired, such that
slot expires once a = 1.8 The Slot Mechanism defines a discretized
age variable,9

s = s(a) = ⌈20a⌉/20,
that divides the age of ownership into twenty sub-intervals, such that
s = 0.05 for a ∈ (0, 0.05] (the first 72 minutes), s = 0.10 the next 72
minutes, and so forth. In the Empty state, with no ownership, we
use the convention s = a = 1.

3. Accounts can place a bid at any time provided the bid is greater
than, or equal to, the prevailing minimum bid. The minimum bid
depends on the age of current ownership, a, and the last purchase
price, B.

The minimum bid is given by

MB(B, a) = 1.05×B × (1− s60) +M, (21)

where B is the most recent purchase price and M is the minimum
slot price, which is defined by

M = LPTokens× TradingFee

25
.

When ownership changes before the time of expiration (a < 1), the
current owner is refunded

R(B, a) = B × (1− s(a)).

3.2 Continuous Common Value Auction

To determine the equilibrium of the continuous auction, we must deter-
mine the optimal bidding strategy. The problem is similar to solving for
the optimal bid in a static auction with a minimum bid, however the
possibility of being outbid prior to the expiration makes the continuous
auction different.

8The variable a is identical to t using in Section 4.1.1. of ”Automated Market Maker on
XRP Ledger”. We use t to denote continuous time below.

9⌈x⌉ is the ceil function that rounds x up to the nearest integer.
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3.2.1 Insight from a Simplified Problem

To gain intuition of the problem we begin by considering a simplified
version:

• There is perfect information and homogeneous bidders,such that all
bidders assign the same value, V to slot ownership.

• Outbidding is only possible immediately after a successful bid, which
we label instantaneous outbidding.

• If instantaneous outbidding occurs, the slot holder will suffer a 5%
loss, because the refund rate is 95% immediately after a successful
bid.

• If instantaneous outbidding does not occur, then the slot will be in
the possession of the holder for the full duration (24 hours).

In this simplified situation, a successful bidder will earn the profit
when

Π ≡ Et

[∫ t+1

t

πada

]
.

Now we assess a new bidder buying the slot in this simplified version.
Let B denote the most recent purchase price. A successful new bid, B′,
for the slot must meet two basic requirements. First, it must meet the
the minimum bid requirement, which is B′ ≥ 1.05B(1 − s60) + M . Sec-
ond, it must be sufficiently large to deter competitors from instantaneous
outbidding. An instantaneous outbid is profitable if Π ≥ 1.05B′ +M . A
new success bid is defined as

B′ ≥ Π−M

1.05
≡ BL,

which is the threshold at which instantaneous outbidding becomes un-
profitable. For example, if Π = 110 and M = 5, then the bid must be at
least BL = 100 to deter an instantaneous outbid.

This simplified bidding problem is illustrated in Figure 1. The ex-
pected profit of a slot holder is illustrated by the shaded areas in the
figure. A bid below BL will not deter an immediate outbid. The partial
refund is illustrated with the solid blue line. We can see that the partial
refund always induces a negative profit, which is represented by the height
of the red shaded area. A bid above BL will deter an immediate outbid
making the expected profit the difference between Π and the 45 degree
line, whish is illustrated as the blue shaded region. Naturally, a bid that
is larger than Π will result in an expected loss.
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Figure 1: The expected profit of a slot holder in a simplified problem.

In this simplified version of the problem the optimal bidding strategy
is

B∗ = max(BL,M),

provided that the minimum slot price makes it profitable to bid, i.e. M ≤
Π.

The actual problem is more complicated for two reasons. First, de-
terring instantaneous outbidding need not preclude outbidding at a later
point in time before slot expiration. Second, the value process is a stochas-
tic process that depends on volatility, liquidity pool size, and the intensity
of noise trader arrivals. So, the actual problem is a dynamic stochastic
optimization problem, where outbids occur at random times and the the
duration of ownership will be a random variable.

3.2.2 The Dynamic Problem

A key variable in the dynamic problem is the random duration of slot
ownership,

δ(B) ∈ [0, 1],

which is defined as the time where it becomes profitable to outbid the
current slot holder. This type of random variable is called a stopping
time. The expected duration is increasing in B, which is important for
determining the optimal bidding strategy.
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The following expression is for the expected value of winning the slot
at time t with the bid B,

Vt(B) ≡ Et

[∫ t+δ(B)∧1

t

π(Ya, σ
2
a)da+R(B, δ(B))

]
, (22)

which is the profit earned until outbidding occurs, and the refund is dis-
tributed.

Outbidding is profitable at time t′ = t + d if there exists a bid, B′,
that is both profitable and meets the minimum bidding requirement, i.e.
min(B′, Vt+d(B

′)) ≥ MB(B, d). Since δ(B) is the first time outbidding is
profitable, we can infer that

δ(B) = min
{
d : MB(B, d) ≤ min(B′, Vt+d(B

′)) for some B′} , (23)

with the convention that δ(B) = 1 if no solution exists for d ≤ 1.
From (22) it is clear that the value function, Vt(B), depends on the

slot duration. More precisely, it depends on the conditional distribution
of an outbid over the period (t, t+1], which is characterized by the distri-
bution of δ(B) given the information available at time t. Similarly, from
23 it is evident that the slot duration, δ(B), depends on the future path
of the value function, Vt+d(B), which is also random, because it depends
on the volatility process, {σt}, the intensity of noise trader arrivals, as
well as Yt. Once the random properties of these variables are fully speci-
fied the value function can be obtained by solving the recursive dynamic
optimization problem. One way to solve this problem is by the methods
of reinforcement learning, and we include the pseudo code for this in the
Appendix.

While the solution to the problem will be context specific, we can char-
acterize some of its generic properties in relation to the simplified problem
we consider above. The threat of an instantaneous outbid will impose a
lower bound, BL, on bids that will be profitable. This lower bound will
increase, because the bid has to be sufficiently large to both deter instan-
taneous outbidding, as well as decrease the likelihood of outbidding at at
later point in time. The lower bound is therefore given by

MB(BL, 0) = Vt(MB(BL, 0)). (24)

This solution exists assuming Vt is continuous with respect to B. The
proof is simple. For sufficiently large B, no one will outbid until duration.

Therefore, limB→∞ Vt(B) = Et

[∫ 1

0
πada

]
. If Vt(B) < B for all B in

equilibrium, no one will outbid for the slot, so the bidder can take the slot
for the full duration with a small bid obtaining positive profit. Therefore,
there exists B0 such that Vt(B1) > B1. By continuity of Vt(B), we can
find B∗ ∈ [B1,∞) such Vt(B

∗) = B∗.
Note that MB(BL, 0) is on the 45 degree line, where the bid is identical

to expected profit. Meanwhile, it is not profitable to bid a larger amount
than

BU ≡ Vt(MB(BL, 0)),

The optimal bid, B∗, is therefore pinned down between BL and BU . An
illustration of what the solution to the dynamic problem could look like
is in Figure 2.
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Figure 2: Illustration of value function, V (B), in stochastic dynamic optimiza-
tion problem.

4 Do LPs benefit from Auction Slot Mech-
anism

The Auction Slot Mechanism is beneficial to LPs if they earn more profit
than in an identical AMM without the slot. Specifically, the value of
the amount of burned LP shares from the auction plus fees from non-
slot holders must be greater than the total amount of fees in an identical
AMM pool which does not have the slot. Logically we show the aggregate
of fees contributed by arbitrageurs in a system without the slot would
inevitably be lower than the profits of a zero-fee arbitrageur. Therefore, if
the the profits of the zero-fee arbitrageur are higher and if the auction can
sufficiently burn enough of that value then the Auction Slot Mechanism
will benefit LPs. We start by exploring the amount of fees each system
generates.

Assuming no noise traders, Milionis, Moallemi, and Roughgarden [2023a]
derive a closed-form solution for fees collected from arbitrageurs in a sys-
tem with no slot and find that the collected fees are smaller than ΠVol, the
volatility profit of arbitrageurs. Despite a lack of research on fee collection
in the presence of noise traders, it is reasonable to posit that in a system
without a slot mechanism, the collected fees are sometimes not sufficient
to compensate Impermanent Loss of LPs, as reported in Kim [2023]. On
the other hand, the total arbitrage profit from zero-fee trader is greater
than the impermanent loss. If the auction mechanism is appropriately
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designed, it can improve the profit of LPs. In this section, we formulate
that expected total revenue from Auction Slot, and study the condition
when it is maximized.

4.1 Expected Total Revenue from Auction Slot

The expected total revenue from the auction for a given time interval
[0, T ) is

E0 [B
∗
1 −R (B∗

1 , δ1) +B∗
2 −R (B∗

2 , δ2) + . . . ] (25)

where B∗
i is i-th effective bidding made at time ti and δi is the duration

of the i-th slot. By adding and subtracting Vti(B
∗
i ), the equation (25) can

be rewritten as:

E0

[
∞∑
i=1

{B∗
i − Vti (B

∗
i )}+

∞∑
i=1

{Vti (B
∗
i )−R (B∗

i , δi)}

]
(26)

Using the equation (22), we can rewrite the above equation:

E0

[
∞∑
i=1

{B∗
i − Vti (B

∗
i )}

]
+ E0

[∫ T

0

πada

]
(27)

The second term is the expected profit of a zero-fee arbitrageur on the
given interval. The first term is always non-positive, because the maxi-
mum willingness to pay a rational bidder is the value of the slot, therefore
B∗

i ≤ Vti(B
∗
i ) always holds.

The expected total revenue from auction slot is maximized when the
sum of the loss is minimized. Figure 2 illustrates the loss from each bid,
B∗

ti − Vti(B
∗
ti), and shed light on how to minimize the loss at the same

time. When BU = BL, i.e., MB(BL, 0) = BL, B
∗
ti − Vti(B

∗
ti) = 0 holds.

However, the current MB function does not satisfy this condition. We
can consider using a Minimum Bid function MB1 which is similar to the
current MB(B, a), such that

MB1(B, a) =
{
1− (1− a)60

} [
1.05 ·B · (1− s60) +M

]
+ (1− a)60B.

MB1(B, a) satisfies the condition MB(BL, 0) = BL and has a similar
shape to the original one for sufficiently large a.

To summarize, under the current mechanism, slot holders have the op-
portunity to retain a portion of their arbitrage profits without committing
it entirely to bids. However, by designing appropriate auction mechanism
which is compatible with blockchain consensus algorithm, LPs can extract
the entire arbitrage profit through slot auction.

5 Conclusion

Ripple’s proposed Auction Slot Mechanism has several potential affor-
dances for AMM designs. Specifically, it may create a positive feedback
loop in the AMM system that increases profits for both the slot holder
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and LPs. Doing so would create deeper and more stable liquidity in the
entire system.

We prove mathematically that the slot holder generates more profit
from the slot auction than an AMM system without the slot. Zero-fee
arbitrageurs are capable of maintaining more efficient pricing in the AMM
compared to scenarios where fees are present. They actively align price
discrepancies with other markets, fostering a transfer effect in market
liquidity. This positively effects noise traders by giving them deeper and
more stable liquidity. 10 This provides an environment for greater trading
activity in the liquidity pool. On top of that, we also prove that the
profit for LP is dependent on the Auction Slot Mechanism, and suggest
an improvement to increase the profit of LPs.

However, the discussion in this paper has the following limitation.
First, we assume the perfect information. However, the assumption does
not hold in reality, because the true price, spot volatility, and their stochas-
tic processes are not directly observed rather estimated. The variation in
the estimates among bidders could lead to bidding below the true common
value to avoid winner’s curse; see Chapter 5 in Krishna [2009] for more
detailed discussion. Second, it should be noted that even for zero-fee ar-
bitrageurs, significant investment in a system capable of high-frequency
arbitrage is required, implying substantial fixed costs. In such a scenario,
bidders with greater financial resources could potentially monopolize the
arbitrage market. For instance, a well-funded bidder might consistently
place bids higher than the actual arbitrage profit to secure the slot for
themselves. This strategy could eventually force other bidders, unable to
sustain the fixed costs, out of the market. Once competitors are elim-
inated, the dominant bidder can secure the slot with bids significantly
lower than the expected arbitrage profit.

Finally, the issue of front-running in DEXs can be exacerbated in
blockchain like Ripple Network, where network fees are very low, and
randomized transaction ordering is employed. For instance, according to
the XRP Ledger’s documentation, a zero-fee arbitrageur can operate up
to five accounts with zero fees. Ripple Network uses a pseudo-random
transaction ordering algorithm, which calculates an account key for each
transaction, combining the account ID and the salt using XOR operation,
and the transactions are sorted based on the account key within a block.
However, the strategic generation of multiple accounts can help to predict
the intervals of these priorities. Utilizing five accounts can significantly
increase the likelihood (upto approximately 83.3% change) of successfully
executing a sandwich attack. See Tumas, Pontiveros, Torres, and State
[2023] for strategic account generation for front-running. The profitabil-
ity of these manipulative trading strategies, however, can vary with the
available order options, such as slippage limit or exeucte-only when an
order ranks higher in priority than those of zero-fee arbitrageur, and the
noise traders’ adaptation to transaction costs.

10If noise traders are able to strategically split and place their orders, this also leads to
larger volume orders at a reduced effective trading cost
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A Pseudo Code for the Value function
Estimation

The problem of optimal bidding in the continuous auction can be repre-
sented by the 4-tuple

⟨(σt, Yt), bid, stochastic processes of (σt, Yt), πt⟩ .

This aligns with the standard Markov Decision Process(MDP) framework
of State(S), Action(A), Transition Probability(P ), and Reward(R). We
utilize Monte Carlo method in Reinforcement Learning(RL) to solve this
MDP. A detailed discussion of Monte Carlo method in the context of RL
can be found in Chapter 5 of Sutton and Barto [2018]. For notational
convenience, we represent the state at time t as St = (σt, Yt).

As discussed in the in Section 3, the auction’s outcome is influenced
by one’s own and other participants’ bidding strategies, characterizing it
as a non-cooperative multi-agent game. Under the assumptions of perfect
information and symmetric agents, we solved the optimal bidding problem
given unknown Vt(B).11 We approximate Vt in discrete time framework
by

V (θ)(St, B) ≡ V
(θ)
t (B) ≈ Vt(B)

using a Deep Neural Network with parameters θ, focusing on the cases
where the slot auction results are settled only at K discrete times t ∈
{tk}K−1

k=0 for tk = k
K
.

Let Pti denote a probability measure for a set of events conditional on
all variables observed at time ti and 1D(x) be an indicator function which
yields 1 if x ∈ D, and 0 otherwise. Then, the following equation holds for
the value function:

V
(θ)
t0

(B) =

K−1∑
k=0

{
Et0

[
ΠArb

tk,tk+1

∣∣∣∣1{∩k
j=0Dtj

(B)}(µ) = 1

]
Pt0

(
1{∩k

j=0Dtj
(B)}(µ)

)
+Et0

[
R(B, tk)

∣∣∣∣1{∩k−1
j=0 Dtj

(B)∩Dc
tk

(B)}(µ) = 1

]
Pt0

(
1{∩k−1

j=0 Dtj
(B)∩Dc

tk
(B)}(µ) = 1

)}
(A.1)

for Dtj (B) =
{
Stj |MB(B, tj) ≤ BU,tj

}
with BU,tj = V

(θ)
tj

(BU,tj ). Here,

Dtj (B) denotes the set of events where profitable outbidding is feasible,
as depicted in Figure 2. For a given trajectory µ = (St0 , St1 , . . . , StK−1),
the equation 1{∩i

j=0Dtj
(B)}(µ) = 1 holds when profitable outbidding has

been unfeasible from t0 to ti.
The application of Deep Neural Networks in finance necessitates care-

ful consideration due to their inherently opaque nature. To foster trans-
parency and maintain alignment with the equilibrium we derived in Sec-
tion 3.2.2, we propose a specific formulation of V (θ)(S,B) in accordance

11The value function Vt in our context is dependent on the bid B, making it an action-value
function. In RL, the action-value function is typically denoted as Q, while the state-value
functions are represented by V . On the other hand, in the field of Auction Theory, the
notation V is conventionally used to signify the value gained from an auction. In our work,
we adhere to the notation practices of Auction Theory, using V to denote our action-value
function, despite the deviation from the standard RL terminology.
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with the insights illustrated in Figure 2:

V (θ)(St, B) =

{
0.95B if B < B

(θ2)
L (St)

f (θ1)(St, B) · π(St) Otherwise
(A.2)

where π(St) ≈ Et

[∫ t+1

t
π(Sa)da

]
represent the expected arbitrage profit

over the maximum duration, the function f (θ1)(St, B) in the range (0, 1)
is a neural network with a sigmoid output activation function. This for-

mulation ensures V (θ)(St, B) < Et

[∫ t+1

t
π(Sa)da

]
. Additionally, as we

demonstrated in equation 24, MB(BL, 0) = BU = Vt(BU ) holds. Di-
rect numerical calculation of BU for each St satisfying V (θ)(St, BU ) = BU

would require separate optimization processes whenever St is encountered
in the simulation, leading to a significant computational load. To circum-
vent this, we introduce the neural network g(θ2)(St) to estimate BU so
that V (θ)(St, g

(θ2)(St)) = g(θ2)(St), thereby improving the computational
efficiency of the model.

The pseudocode for estimating V (θ) using Monte Carlo method is as
follows:

Algorithm 1 Q-learning for estimating V (θ) ≈ V

1: Hyperparameters: Step size α ∈ (0, 1], termination criteria, the number
of trajectories N , and discreteness parameters K.

2: Initialization θ = (θ1, θ2) for V
(θ)(S,B)

3: loop
4: Generate Sj,t0 = (σj,t0 , Yj,t0) from an arbitrary initial distribution for

j = 1, . . . , N .
5: Generate {Sj,tk} for j = 1, . . . , N and k = 1, . . . ,K − 1 based on the

stochastic processes of the state variables.
6: Calculate Loss L(θ2) and update θ2

L(θ2) =
1

NK

N∑
j=1

K−1∑
k=0

(
g(θ2)(Sj,tk)− V (θ)(Sj,tk , g

(θ2)(Sj,tk))
)2

7: Generate bj ∼ U [Π(θ3)(Sj,t0)/3,Π
(θ3)(Sj,t0)] for j = 1, . . . , N

8: Calculate the target y
(θ1)
j , loss L(θ1), and update θ1

y
(θ1)
j =

K−1∑
k=0

ΠArb
tk,tk+1

(Sj,tk)1{∩k
j=0Dtj

(bj)}(µj)+R(B, tk)·1{∩k−1
j=0Dtj

(B)∩Dc
tk

(B)}(µj)

L(θ1) =
(
V (θ)(Sj,t0 , bj)− y

(θ1)
j

)2

9: end loop If termination criteria is met
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