
Stochastic fluctuations of sandwich attack in decentralized

exchanges

Huisu Jang1*, Bumho Son2, and Yunyoung Lee3

1School of Finance, Soongsil University, Sangdo-ro 369, Seoul, 06978, Korea
2Department of Business Administration, Chung-Ang University, Heukseok-ro 84,

Seoul, 06974, Korea
3Department of Data Science, Sejong University, Neungdong-ro 209, Seoul, 05006,

Korea

January 25, 2024

Abstract

This study aims to investigate the complexities of Maximal Extractable Value (MEV) in Decen-
tralized Finance (DeFi), with a focus on sandwich attacks on decentralized exchanges (DEXs). We
present a novel model that revises traditional assumptions about attacker behavior, highlighting a
strategic balance between transaction fees and the unpredictability of profits, by introducing the
concept of ’external slippage’. Our approach contrasts with previous beliefs that attackers always
maximize slippage against victims. Our empirical analysis demonstrate that the theoretical insight
is aligned with the actual market behavior based on sandwich attack data with Uniswap liquidity
pool swap transactions. This research not only deepens the understanding of sandwich attack
but also paves the way for future explorations into the market dynamics of MEV. Additionally,
our results underscore the necessity of refining assumptions regarding attack volumes for better
alignment between theoretical models and empirical data.

1 Introduction

MEV (Maximal Extractable Value) is a feature that occurs in the DeFi (decentralized finance) industry
and refers to the additional benefit that a validator or other participant can extract during the process
of creating a transaction in a block. MEV encompasses various forms, including profit generation
via general arbitrage, liquidation, and sandwich attacks. While not all instances of MEV negatively
impact the market — with rapid arbitrage and liquidation often enhancing DeFi market efficiency —
sandwich attacks represent a more problematic aspect. In such attacks, an entity manipulates market
prices to yield extra profits, adversely affecting the victim through this manipulation. Consequently,
sandwich attacks are categorized as a form of MEV with potentially harmful implications for the DeFi
market.

In this research, we introduce a novel model that determines the optimal attack volume for attackers
in sandwich attacks on decentralized exchanges (DEXs). Our model takes into account the variability
in the attacker’s expected profits, offering a realistic reflection of DeFi market conditions. Contrary to
[HW22]’s assertion that attackers exploit the maximum slippage available to victims, empirical data
suggests a more nuanced approach where attackers do not fully utilize the victim’s maximum slippage.

A critical aspect of sandwich attacks is the uncertainty faced by both attackers and victims re-
garding the transaction order within a block. To influence this order, participants pay a priority fee
in addition to the base gas fee, increasing the likelihood of their transaction being executed earlier.
The preliminary analysis reveals a direct correlation between increased priority fees and earlier trans-
action placement. This finding underscores the trade-off between the cost of achieving earlier order of
transaction in a block and the consequent reduction in the unpredictability of sandwich attack profit.

We leverage this empirical data to introduce the concept of ’external slippage,’ which plays a
pivotal role in shaping attackers’ strategic decisions. We presents a novel model that guides attackers

1

in optimizing their attack strategies within these market dynamics. External slippage represents a
balancing act for attackers, weighing the costs against the variability in expected returns. A larger
priority fee increases the likelihood of a transaction being executed earlier in a block, consequently
encountering fewer price shifts due to subsequent transactions. This reduction in price fluctuation
leads to a more predictable range of potential profits. However, this advantage comes at the expense
of higher fees. Conversely, a smaller priority fee follows the opposite principle, with reduced costs but
increased variance in returns. Our model quantifies the probability of a successful sandwich attack and
suggests that, contrary to previous studies, attackers may opt for smaller-scale attacks, a hypothesis
we substantiate through empirical evidence.

Our approach is not solely theoretical; we validate our model against actual market data. Through
an analysis of swap transactions in Uniswap versions 2 (V2) and 3 (V3) liquidity pools in November
2022, our study validates the main idea of our model. It demonstrates that sandwich attackers execute
transactions at an optimal volume, aiming for partial rather than full slippage against victims, by
balancing the trade-off between incurred costs and the minimization of profit volatility.

The structure of the paper is as follows: Section 2 reviews related research. Section 3 details our
proposed theoretical model and the decision-making process for attackers. Section 4 presents empirical
evidence supporting our model. Finally, Section 5 summarizes our contributions and outlines directions
for future research.

2 Background

2.1 Automated Market Maker (AMM)

Many DEXs implement automated market makers (AMMs) as their core mechanism, which are al-
gorithms facilitating instant trades without the need for traditional order books. Most AMM-based
DEXs use Constant Function Market Makers (CFMMs), with a CFMM employing a fixed pricing
mechanisms, whereby the asset’s price is determined solely by the ratio of the two assets in the liq-
uidity pool. This design choice eliminates the need for complex algorithms ore external price oracles,
streamlining the trading process and enhancing the transparency of price discovery. The constant
function nature of CFMMs, often associated with the well-known automated market maker Uniswap,
has garnered attention for its simplicity and resistance to certain types of market manipulation. How-
ever, challenges such as impermanent loss and the potential for suboptimal pricing under extreme
market conditions necessitate further research and optimization in order to fully realize the benefits
and address potential drawbacks associated with CFMMs in decentralized financial ecosystems.

Uniswap V2 In Uniswap V2 [AZR20], we denote the amount of tokens X and Y reserved in the
liquidity pool as x and y respectively, and the overall liquidity of the pool as L. Assuming that there
is no additional liquidity provision, the amount of tokens in the pool should always follow the CFMM
formula as follows:

x · y = L2 (1)

The marginal price of the asset Y with respect to X at time t can be computed as :

pt = −∂xt

∂yt
=

L2
t

yt
=

xt

yt
(2)

A token swap within the liquidity pool triggers a state change in the token reserves. However, the pool
must consistently adhere to the invariant formula expressed in Equation 1. Consequently, when there
is an alteration in quantities denoted by ∆x and −∆y, the resulting amounts (x+∆x) and (y −∆y)
must still satisfy:

(x+∆x) · (y −∆y) = L2 (3)

Uniswap V3 & Concentrated Liquidity Uniswap V3 [AZS+21], represented a significant ad-
vancement beyond Uniswap V2 by introducing the concept of concentrated liquidity, deviating from
the equal distribution of liquidity across the entire price spectrum seen in Uniswap V2. Formally,

2

liquidity providers in Uniswap V3 possess the capability to concentrate their liquidity within specific
price ranges, referred to as ”ticks,” rather thanuniformly providing liquidity across the entire price
curve. This design allows liquidity providers to strategically target specific price ranges where they
anticipate more favorable trading opportunities or reduced impermanent loss. The introduction of
concentrated liquidity in Uniswap V3 aims to enhance capital efficiency, providing liquidity providers
with more nuanced control over their assets within the trading range. This innovation reflects a so-
phisticated approach to liquidity provision, catering to a broader spectrum of user preferences and risk
profiles within the dynamic landscape of DeFi.

As each Uniswap V3 liquidity provider has unique liquidity positions characterized by distinct tick
ranges, consider a liquidity position with liquidity L, the lower price boundary pl, and the upper price
boundary pu. In this context, the following equation should hold:

(x+
L

√
pu

)(y + L
√
pl) = L2 (4)

The description of Uniswap V3 provided here is inherently localized, focusing on trade dynamics within
specific price intervals. Integrating these local dynamics across all price points results in the formation
of an aggregate reserve curve, governing trades across the entire spectrum of possible prices.

The swap mechanism employed in Uniswap V3 adheres CPMM model, which is in line with the
approach employed in Uniswap V2. Assuming that the current price is Pc and a trader endeavors to
input ∆y of token Y and receive ∆x of token X in return. We know the fact that when swapping
within a price range, only Pc changes and the liquidity L remains unchanged. Then, we can find the
post-swap price by using:

∆
√
P =

∆y

L
(5)

As we know the input amount ∆y, the post-swap price Pa is:√
Pa =

√
Pc +

∆y

L
(6)

After calculating the post-swap price, we can calculate the token amounts by using the amount calcu-
lations functions:

x =
L(

√
Pc −

√
Pa)√

Pc

√
Pa

y = L(
√
Pc −

√
Pa)

(7)

2.2 Sandwich Attack

The sandwich attack is typically done on the DEX liquidity pool by actual attackers or the predatory
trading bots. It aims to attack the traders who want to swap two tokens in the liquidity pool by adding
the front- and back- run transactions to the trader’s transaction. The basic principles of success of
the sandwich attack is to temporarily manipulate the swap price in the liquidity pool. The front-run
transaction increase the swap price of the token that the trader want to receive, and the back-run
transaction realize the profit of attackers.

For the rest of our model analysis, we will consider the sandwich attack on single liquidity pool
consisted of tokens X and Y with swap transaction fee f . The initial amounts of tokens in the liquidity
pool before the transactions are sent (i.e., the state of the liquidity pool in the most recently created
block) are x0 and y0, respectively. The trader sends the transaction Tv, which exchanges δvx amount
of tokens X to δvy amount of tokens Y . Tv also contains information about the maximum slippage
tolerance s, which determines how much loss the trader is willing to accept and proceed with the swap.
Since δvy is derived from the most recently observed state of the liquidity pool, the actual state of
the pool when the Tv is executed might be different, which leads to the difference of the amount of
tokens Y that the trader will receive. We will denote the actual amount of tokens Y that the trader
will receive as δ̃vy . The transaction will be only executed when the following condition is satisfied:

δ̃vy ≥ (1− s)δvy (8)

3

When the trader, the victim of the sandwich attack, submits transaction Tv to the mempool, the
attacker observes it and creates front-run transaction T front

a and back-run transaction T back
a . T front

a

swaps δinax
tokens X for δay

tokens Y and T back
a swaps δay

tokens Y for δoutax
tokens X. The attacker

binds three transactions (T front
a , Tv, T

back
a) and submits it to the mempool with base fee b and priority

fee r.

3 Model

3.1 The relationship between transaction fee and transaction order

To support our theoretical model that the amount of fee that attackers are willing to pay to the
block proposers (or validators) can significantly influence the position of their transactions within a
block, we empirically investigate the relationship between transaction costs and transaction indices.
Accordingly, we compute the correlation between transaction index and the cost-related variables(gas
price, transaction fee, and the overall cost=transaction fee + coinbase transfer). Our attack model is
based on the assumption that block proposers determine the transaction order within the block based
on the potential revenue they can receive from each transaction. As a result, in addition to the absolute
value of each cost-related variables, we also compute the relative rankings of transaction index, gas
price and overall cost within the block in descending order. For instance, if a transaction has a lower
gas price ranking, it indicates a higher gas price compared to other transactions. Using these data,
we begin by calculating the Pearson’s correlation matrix among transaction ranking, gas price, overall
cost, cost ranking, and gas price ranking. As shown in Table 1, the correlation matrix reveals a high
correlation between the transaction order and the relative ranking of gas price (0.7912). This suggests
that block proposers accord higher priority to gas price compared to other variables when determining
the sequence of transactions within the block. This behavior of block proposers seems quite reasonable,
given that the actual transaction fee cannot be precisely predicted in advance, as block proposers face
challenges in estimating the exact amount of gas used for each transaction. Instead, they utilize the
relative gas price ranking of the transactions in the mempool as a criterion for establishing the order
of transactions. Additionally, Figure 1 plots the gas price ranking and transaction order ranking of
5,000 transactions, visually confirming the high correlation between them. It clearly demonstrates
that transactions with a higher gas price compared to others are positioned earlier in the block. We
also provide the Spearman and Kendall’s correlation between transaction order and the cost-related
variables in Table 2. The results closely align with those in Table 1.

Figure 1: The transaction order and the gas price ranking of 5,000 transactions.

4

Table 1: Pearson’s Correlation Matrix between transaction order and cost-related variables

tx ranking gas price gas price ranking overall cost cost ranking
tx ranking 1.0 -0.1160 0.7912 -0.0147 0.1603
gas price -0.1160 1.0 -0.1280 -0.1262 -0.0803
gas price ranking 0.7912 -0.1280 1.0 0.0064 0.0576
overall cost -0.0147 0.1262 0.0064 1.0 -0.0533
cost ranking 0.1603 -0.0803 0.0576 -0.0533 1.0

Table 2: Spearman and Kendall’s Correlation Matrix between transaction order and cost-related vari-
ables

Panel A: Sperman Correlation

tx ranking gas price gas price ranking overall cost cost ranking
tx ranking 1.0 -0.4351 0.6842 -0.1358 0.1464

Panel B: Kendall Correlation

tx ranking gas price gas price ranking overall cost cost ranking
tx ranking 1.0 -0.3978 0.6814 -0.09678 0.1187

3.2 External Slippage

At the point that trader submits a swap transaction, Tv, to the liquidity pool, he expects to receive
δvy amounts of token Y as follows:

δvy =
y0(1− f)δvx

x0 + (1− f)δvx
(9)

However, the amounts of tokens in the liquidity pool will change for every swap transactions. Therefore,
the actual states of the liquidity pool when each transaction is executed will be different. We will define
the states of the liquidity pool just before when transactions T front

v , Tv, and T back
V are executed as

(x′
0, y

′
0), (x

′
1, y

′
1), and (x′

2, y
′
2), respectively.

It is important to point out that (x′
0, y

′
0) will be different from (x0, y0), which is the crucial difference

between our work and [HW22]. It occurs because of the external slippage. We will define internal
slippage and external slippage, which when added together will equal to the total slippage that the
transaction of trader will actually face. The sandwich attack of attackers itself causes the internal
slippage to the transaction of trader who would be a victim of sandwich attack. On the other hand,
external slippage means the change in the state of liquidity pool that is not expected by the attackers.
Even though the attacker who is willing to do the sandwich attack tries to put its transactions at the
front of the block, we cannot affirm that it will locate as the first transaction of the newly created
block. Therefore, there exists the possibility of other transactions participating in the liquidity pool
may precede the T front

v . These other transactions affects the state of the liquidity pool and it becomes
the external slippage. As a result, the sum of the internal and external slippage should be small enough
to satisfy 9, which leads to the execution of Tv.

During the overall procedures of sandwich attack, the external slippage will be only occurred just
before the T front

a is executed because the transactions (T front
a , Tv.T

back
a) will be bundled together and

no other transactions will be able to get in between them. We will assume that the external slippage

will change (x0, y0) to (x′
0, y

′
0), where x′

0 ∼ N(x0,
σ2

r) and x0y0 = x′
0y

′
0. σ2 denotes the magnitude

of external slippage. This assumption is plausible in two senses. First, a change in the state of the
liquidity pool can cause the amount of X to increase or decrease for same chance. x′

0 following the
normal distribution well captures the bi-directional change of the pool state. Second, as the attacker
pays more priority fee r, it becomes more likely to place its transactions at the front part of the
block. It reduces the likelihood of sandwich attack transactions being preceded by other transactions
participating in the same liquidity pool, which leads to the decrease of the magnitude of external
slippage. Even though the normal distribution assumption has the risk that the number of tokens can

have negative value, it has significantly small probability because σ2

r will be much smaller than x0 in
most cases.

5

3.3 Procedures of Sandwich Attack

Given the state of the liquidity pool (x′
0, y

′
0) just before the sandwich attack transactions are executed,

we can derive the quantities of the number of tokens that each transactions will receive. When T front
a

is executed, it will receive δay
tokens Y as follows:

δay
=

y′0(1− f)δinax

x′
0 + (1− f)δinax

(10)

Therefore, (x′
1, y

′
1) becomes x′

1 = x′
0 + δinax

and y′1 =
x′
0y

′
0

x′
0+(1−f)δinax

. Consequently, when Tv is executed,

it will receive δ̃vy tokens Y as follows:

δ̃vy =

x′
0y

′
0

x′
0+(1−f)δinax

(1− f)δvx

x′
0 + δinax

+ (1− f)δvx
(11)

(x′
2, y

′
2) becomes x′

2 = x′
1 + δvx and y′2 =

x′
1y

′
1

x′
1+(1−f)δvx

. Finally, when T back
a is executed, it will receive

δoutax
tokens Y as follows:

δoutax
=

x′
2(1− f)δay

y′2 + (1− f)δay

(12)

When the every procedures are over, the profit of adversary sandwich attackers becomes as follows:

Pa = δoutax
− δinax

− 2b− 2r (13)

However, Tv will not be executed if the total slippage is larger than s. Therefore, we can write the
profit more precisely as follows:

Pa =

{
δoutax

− δinax
− 2b− 2r, if δ̃vy ≥ (1− s)δvy

−2b− 2r, otherwise
(14)

Since δoutax
is the random variable affected by x′

0, we will now consider the expected profit E[Pa|δain
x
, r].

The adversaries aim to maximize its expected profit by controlling δinax
and r. These two parameters

that adversaries can control affects the expected profit in the terms of attack success probability and
cost. As they increase δinax

, E[δoutax
] will increase since the gave more input to the liquidity pool. On the

other hand, the victim will face more internal slippage and it will make harder to meet the slippage
tolerance condition of Tv. Another parameter r directly affects the expected profit since itself is a cost,
and also affects the attack success probability by changing the magnitude of external slippage.

Considering the effects of δinax
and r, we can derive the attack success probability f(δinax

, r) (i.e.
probability of slippage tolerance condition is met) as follows:

f(δinax
, r) = P

 x′
0y

′
0

x′
0+(1−f)δinax

(1− f)δvx

x′
0 + δinax

+ (1− f)δvx
≥ (1− s)

y0(1− f)δvx
x0 + (1− f)δvx

 (15)

We show that f(δinax
, r) has a closed form solution in Lemma 1.

Lemma 1. If a quadratic equation h(x) = −(1−s)x2−(1−s)(2δinax
+(1−f)δvx)x+x2

0+(1−f)δvxx0−
δinax

(1− s)(δinax
+ (1− f)δvx) = 0 has two real roots h1 < h2, then

f(δinax
, r) = Φ(h2−x0

σ2/r) − Φ(h1−x0

σ2/r), where Φ(·) is the cumulative distribution function of standard

normal distribution.

Proof.
f(δinax

, r) = P(h(x0) ≥ 0)

= P(−(1− s)(x′
0 − h1)(x

′
0 − h2) ≥ 0)

= P(h1 ≤ x′
0 ≤ h′

2) (∵ 0 ≤ s ≤ 1)

= Φ

(
h2 − x0

σ2/r

)
− Φ

(
h1 − x0

σ2/r

) (16)

6

Using Lemma 1, we can derive the expected profit of the adversary attacker as follows:

E[Pa] =

(
Φ

(
h2 − x0

σ2/r

)
− Φ

(
h1 − x0

σ2/r

))
(δoutax

− δinax
)− 2b− 2r (17)

In the perspective of attackers, they will act to maximize its expected profit. Specifically, they will
solve the following two variables optimization problem.

max
δinax

,r
E[Pa]

s.t. δinax
, r ≥ 0

(18)

We can compare the optimal solution δsax
derived from [HW22] with the optimal solution (δ∗ax

, r∗)
of Equation 18. δ∗ax

will be smaller than δsax
because δsax

is based on the belief that optimal adversaries
will attack as much property that just satisfies the slippage tolerance. Since we have pointed out
the existence of external slippage, adversary should maintain enough safety margin or high level of
transaction fee to guarantee high possibility of the attack success.

4 Empirical study

4.1 Data Collection

Figure 2: Example of a sandwich attack detected at the Uniswap V2 BIOS/WETH Pool in block
16009112.

We analyze the sandwich attacks detected on Uniswap V2 and V3 to comprehend the practical
nature of how these attacks are executed. Initially, we identify sandwich attacks carried out between
block 16,000,000 (Nov 18, 2022) and block 16,010,000 (Nov 20, 2022) employing the detection algorithm
proposed in [PJL+24]. To streamline our analysis, we exclusively focus on attack cases where WETH
(Wrapped Ether) is among the underlying assets in the pool. Furthermore, we filter the attacks to
include only cases where the attacker’s profit is denominated in WETH, and the sum of the other assets
amounts to zero. As a result, our empirical analysis comprises of 1463 sandwich attacks, consisting
of 4810 swap transactions. To acquire comprehensive details for each transaction within our dataset,
we leverage the Erigon node of the Ethereum blockchain. Our access to the Erigon archive node
facilitated the retrieval of substantial information pertaining to the transactions. This encompassed
critical data such as the transaction fee (computed as the product of gas price and used gas), coinbase
transfer (direct transfer of Ethereum to the proposer of a block), transaction index, and the quantity
of underlying assets exchanged within Uniswap pools.

Moreover, our dataset includes pools from both Uniswap V2 and V3. Consequently, we compute
the marginal price for each pool differently, depending on the respective version of the pool. For
Uniswap V2 pools, we denote the amount of each token deposited at time t as xt, yt for two tokens X
and Y , and Lt denoting the liquidity of the pool. With the invariant formula xtyt = L2

t , the marginal

7

Table 3: Summary of the sandwich attack dataset

Panel A: Uniswap V2 & V3 Comparison
Uniswap V2 Uniswap V3

of frontrun transactions 1263 423
of victim transactions 1089 349
of backrun transactions 1263 423
Panel B: Descriptive Statistics (in WETH)

Cost Revenue Profit
of observations 1463 1463 1463
Mean 0.026640 0.028505 0.001865
Median 0.008073 0.008609 0.000101
Standard Deviation 0.085542 0.089568 0.009376
Min 0.001611 0.001612 -0.000626
Max 1.403588 1.464834 0.184897

price of token Y respect to token X can be calculated as pt = −∂xt

∂yt
=

L2
t

yt
= xt

yt
. To apply this formula,

we collect the token reserves’ amount for Uniswap V2 pools at each block. However, for Uniswap V3
pools, the marginal price cannot be calculated simply as the ratio of token reserves between X and Y
since the provided liquidity varies based on the given price interval. Therefore, we additionally obtain
SqrtPriceX96 at time t, where SqrtPriceX96 = 296 ×√

pt. Thus, the marginal price can be computed
as pt = (SqrtPriceX96)2/2192 for Uniswap V3 pools. Table 3 represents the descriptive statistics of
sandwich attack dataset used for our empirical analysis.

To enhance readers’ understanding of the sandwich attack, we provide an illustration of an actual
sandwich attack detected at block 16009112 in Figure 2. The attack was executed at BIOS/WETH pool
of Uniswap V2, where the attacker initially inflated the price of BIOS by buying 3277.214505 BIOS
with 0.106264 WETH. Subsequently, the victim had to purchase 6836.634842 BIOS at an elevated
price, further driving up the price OF BIOS in the pool. Finally, the attacker sold the 3277.214505
BIOS obtained in the frontrun transaction at a higher price, resulting in an arbitrage revenue of
0.001358 WETH. After deducting the transaction fees of 0.00135 ETH for both the frontrun and
backrun transactions, the total profit from the attack amounted to 0.000008 WETH.

4.2 Simulation results

We have done numerical analysis of our proposed model framework. For the simulation, we set param-
eters s = 0.001, x0 = 1000, y0 = 1000, f = 0.003, δvx = 100, σ = 0.01, b = 0. The Figure 3 shows the
surface of expected profit by varying δinax

and r. The red dot is the optimal (δ∗ax
, r∗) = (0.405, 0.005),

while the dashed red line is the line with δinax
= 0.405. In this parameter setting δsax

is 0.524. We can
check that there exists optimal solution in the point that smaller than when we do not account for the
external slippage.

However, δ∗ax
is far smaller than the attack amount from the real world transaction data. It is

the major limitation of our model structure. We assumed that x′
0 will follow normal distribution,

which has the advantage of fully reflecting changes in both directions. However, the problem with this
assumption is that it inherently assumes a low probability of attack success. For example, applying
the optimal attack volume derived from [HW22] to the current model results in only a 50% chance of
attack success.

4.3 Empirical Analysis of Sandwich Attacks

To investigate the practical evidence of our sandwich attack model proposed in Section 3, we assess
whether the attackers attempt to maximize their profit from the attack by selecting the highest possible
input amount (δinax

), thereby reaching the maximum slippage tolerance of the victim’s transaction.
However, in order to correctly compare the slippage tolerance chosen by the victim with the actual
slippage observed through the transaction, we require the historical memory pool data of the Ethereum
blockchain, as the slippage tolerance itself is not recorded in the main blockchain. Nevertheless, due
to constraints in accessing historical memory pool data, which are not stored on the blockchain, our

8

Figure 3: Simulation result of the optimal solution of Equation 18

analysis uses Uniswap’s default maximum slippage thresholds of 0.5% and 5.5% as proxies for these
values, rather than the actual historical pool data. In specific instances, users may opt for the highest
permissible slippage, with Uniswap’s maximum slippage threshold set at 20%. Consequently, in our
empirical analysis, we estimated slippage by examining the transaction volume between the victim and
the attacker, employing the most relevant slippage benchmarks of 0.5%, 5.5%, and 20%.

We introduced a variable termed ”ratio”, representing the proportion of the actual attack input
volume (δinax

(actual)) executed by the sandwich attacker relative to the maximum feasible attack input
volume (δinax

(feasible)), constrained by the victim’s maximum slippage allowance. Figure 4 presents a
box plot for the ’ratio’ variable in our sandwich attack dataset, clearly indicating that the ratio value
for 75% of the total data is below 1. This suggests that attackers do not use the full maximum possible
attack volume suggested by [HW22]’s study. However, approximately 25% of cases exhibit a ratio
exceeding 1. In this case, it can be thought of as an outlier that occurs because the actual slippage
value submitted by the victim is unknown.

Our analysis confirms that the optimal attack volume proposed by our theoretical model is consis-
tent with actual data. However, attacks aiming to achieve maximum slippage in a victim’s transaction,
as described in existing research ([HW22]), constitute less than 10% of all documented successful sand-

9

Figure 4: A box plot of the ratio of the actual attack input volume (δinax
(actual)) executed by the

sandwich attacker relative to the maximum feasible attack input volume (δinax
(feasible))

wich attacks. While there are some inconsistencies between empirical data and our model, refining the
model’s assumptions could lead to a more accurate reflection of real-world data.

5 Related work

The seminal work of [WPG+22] provides a comprehensive overview of defi industry and highlights a
threat of MEV on the industry. MEV is one of the unique characteristics of the cryptocurrency market
that arises due to the transparency of the ledger and the fact that the ledger can not be managed
by the closed entity. [QZG22, DGK+20] laid the groundwork for MEV by quantifying blockchain
extractable value. In decentralized financial markets on public blockchains, most transactions would
be openly processed. All information about senders, receivers, and amounts are publicly available
in a memory pool until they are included in a block created by responsible entities such as miners
or validators. Therefore, the entities, who have the privilege to manage the transaction order in a
block, are incentivized by exploiting that privilege for extra financial gain. Main types of MEV are
arbitrage, liquidation, and sandwich attack. Arbitrage and liquidation are typically considered benign
for enhancing market efficiency. An arbitrage would be executed by anyone who monitors blockchain
state changes and founds a discrepancy in prices between different market. In addition, liquidation
is also performed by defi participants who have monitored the state of the blockchain, which has the
effect of quickly liquidating the insolvent collateral due to price fluctuations [PWXL21].

On the other hand, sandwich attacks in particular are receiving more attention than other MEV
elements because they cause cryptocurrency market instability. Recent researches contribute to a
broader understanding and preventing of sandwich attacks [ZQT+21, HW22, ZNW21]. Sandwich
attacks typically occur on decentralized exchanges that use the AMM(Automated market maker) model
using liquidity pools, and [ZQT+21] formalizes this problem. A sandwich attack basically involves the
attacker reordering the victim’s transaction sequence, including their own. By rearranging the order
of transactions that occur in the liquidity pool of a decentralized exchange and performing front-
running and back-running attacks based on victim transactions, the exchange price is manipulated
and profits are taken in the process. Some studies have been conducted based on cryptography to
improve the way these transactions are reordered, thereby improving vulnerability to sandwich attacks
[FP22, AASCY23]. [ZNW21] demonstrates that the trading bots performing sandwich attacks is
increasingly achieving more efficiency by analyzing the frequency and profitability of sandwich attack
from the large-scale empirical study and proposes that sandwich attacks can be mitigated by splitting
a large transaction into several transactions with small amounts.

The work of [HW22] provides valuable insights into mitigating the sandwich attack problem by
considering the optimal decisions of attackers and victims in a game-theoretical framework. This work
shows that the proposed algorithm providing effective slippage tolerance outperforms the constant

10

auto-slippage by the AMM, Uniswap. Building upon the findings of [HW22], our study extends the
understanding of optimal decision making for attackers and victims. While this study has advanced
our understanding, they leave unanswered questions about the variance of expected return of sandwich
attack. The variance stems from the fact that the order of transaction in a block could be different
according to the priority fee of the transaction. The attackers attempt to acquire the sandwich attack
opportunity by front-running and back-running their victim with higher priority fees to extract MEV
[QZG22]. At this time, the priority fee is included in the cost to the attacker, and depending on how
much this cost is spent, the profit from the attack varies along with the order of sandwich attack
transactions it is executed in the block. Since the probability of attack success varies depending on
the order of transactions within the block, the distribution of expected profits from sandwich attacks
is determined by the priority fee, and this study seeks to present a new model that takes this into
account.

6 Conclusion

In this paper, we have explored the multifaceted nature of MEV in the DeFi ecosystem, with a specific
focus on sandwich attacks on DEXs. Our research contributes a novel model for determining optimal
attack volumes, which diverges from traditional assumptions about attacker behavior in the DeFi
market.

The findings presented challenge the conventional belief that attackers always seek to exploit the
maximum slippage available to their victims. Instead, our model reveals a more complex strategy,
where attackers must weigh the costs of transaction fees against the unpredictability of potential
profits. This strategic decision-making is heavily influenced by the concept of external slippage, a key
element in understanding how attackers navigate the DeFi environment.

Empirical analysis, drawing on real transaction data from Uniswap, lends credibility to our theo-
retical model. It confirms that transactions with higher priority fees are more likely to be executed
earlier within a block, thus affecting the degree of external slippage and the profitability of the attack.
This alignment of theory and practice provides a more accurate understanding of the mechanisms at
play in the DeFi market.

Overall, this paper not only enhances our understanding of MEV in decentralized finance but also
sets the stage for further research. Future studies might explore defensive strategies against MEV, the
impact of regulatory measures, and the broader implications of these dynamics on market efficiency
and security. In addition, more accurate assumption about the attack amount can reduce the gap
between theoretical model and real transaction data. Our findings offer a solid foundation for such
future explorations, emphasizing the need for ongoing research in this rapidly evolving domain.

References

[AASCY23] Orestis Alpos, Ignacio Amores-Sesar, Christian Cachin, and Michelle Yeo. Eating sand-
wiches: Modular and lightweight elimination of transaction reordering attacks. arXiv
preprint arXiv:2307.02954, 2023.

[AZR20] Hayden Adams, Noah Zinsmeister, and Dan Robinson. Uniswap v2 core, 2020. URL:
https://uniswap. org/whitepaper. pdf, 2020.

[AZS+21] Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson.
Uniswap v3 core. Tech. rep., Uniswap, Tech. Rep., 2021.

[DGK+20] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized exchanges,
miner extractable value, and consensus instability. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 910–927. IEEE, 2020.

[FP22] Matheus VX Ferreira and David C Parkes. Credible decentralized exchange design via
verifiable sequencing rules. arXiv preprint arXiv:2209.15569, 2022.

11

[HW22] Lioba Heimbach and Roger Wattenhofer. Eliminating sandwich attacks with the help
of game theory. In Proceedings of the 2022 ACM on Asia Conference on Computer and
Communications Security, pages 153–167, 2022.

[PJL+24] Seongwan Park, Woojin Jeong, Yunyoung Lee, Bumho Son, Huisu Jang, and Jaewook
Lee. Unraveling the mev enigma: Abi-free detection model using graph neural networks.
Future Generation Computer Systems, 153:70–83, 2024.

[PWXL21] Daniel Perez, Sam M Werner, Jiahua Xu, and Benjamin Livshits. Liquidations: Defi on a
knife-edge. In Financial Cryptography and Data Security: 25th International Conference,
FC 2021, Virtual Event, March 1–5, 2021, Revised Selected Papers, Part II 25, pages
457–476. Springer, 2021.

[QZG22] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable value:
How dark is the forest? In 2022 IEEE Symposium on Security and Privacy (SP), pages
198–214. IEEE, 2022.

[WPG+22] Sam Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz, and
William Knottenbelt. Sok: Decentralized finance (defi). In Proceedings of the 4th ACM
Conference on Advances in Financial Technologies, pages 30–46, 2022.

[ZNW21] Patrick Züst, Tejaswi Nadahalli, and Ye Wang Roger Wattenhofer. Analyzing and pre-
venting sandwich attacks in ethereum. ETH Zürich, 2021.

[ZQT+21] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Gervais. High-
frequency trading on decentralized on-chain exchanges. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 428–445. IEEE, 2021.

12

	Introduction
	Background
	Automated Market Maker (AMM)
	Sandwich Attack

	Model
	The relationship between transaction fee and transaction order
	External Slippage
	Procedures of Sandwich Attack

	Empirical study
	Data Collection
	Simulation results
	Empirical Analysis of Sandwich Attacks

	Related work
	Conclusion

