
Domestication of Cryptoassets:
Theory and Evidence

Dong-Hyun Ahna, Jaewon Choib, Kyu Ho Kangc and Seongdeok Kod ∗

December 4, 2023

Abstract

This paper begins with a state-space analysis on a structural break in relationships between
cryptoassets and traditional assets in terms of their returns. A Bayesian MCMC method de-
tects a statistically significant break at the end of February, 2020, which roughly matches the
time period when the institutionalization of cryptoassets became sufficiently noticeable. Based
on this finding, we investigate an issue of developing a legitimate measure that can distinguish
between domesticated cryptos and non-domesticated cryptos where ‘domestication’ refers to two
characteristics of individual cryptos, one for comovment in price with stocks and the other for
pricing consistency with the stocks. A natural candidate for this domestication measure would
be an orthogonal extension in the stochastic discount factor when a cryptoasset is augmented
as an additional basis asset to the stock basis assets. However, we find that this variation of
the Hansen-Jagannathan distance measure results in an counter-intuitive inference about do-
mestication and we adjust it by introducing what we dub ‘amplification factor,’ which is either
linearly or quadratically proportional to idiosyncratic risks of the crypto. We devise a couple
of novel empirical tests for horse racing among the candidate domestication measures and all of
them signify that the seemingly mispriced value against the minimum-norm stochastic discount
factor of the stock basis assets as a benchmark performs the best in terms of precision in sorting
which of cryptos are domesticated. Based on this admissible domestication measure, we find
that the proportion of domesticated cryptos has skyrocketed after the break from 7% to 36%.
In addition, the stochastic discount factor governing the prices of domesticated cryptos is expli-
cable by the representative stock market factors such as the Fama-French 5 factors and the q5

factors, but not by the the crypto-specific factors proposed by Liu, Tsyvinski and Wu (2022).
In contrast, the crypto-specific factors show predominant power in explaining the stochastic
discount factor ruling the prices of non-domesticated cryptos whereas the stock-specific factors
fail to do so. The combined results re-affirm that the domestication measure selected in the
horse racing competition is truely reliable.
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1 Introduction

“These walls are funny. First you hate ’em, then you get used to ’em. Enough time
passes, you get so you depend on them. That’s institutionalized.”

— The Shawshank Redemption

For the last decade or so, cryptoassets have emerged as one of the most controversial but phenomenal
subjects among not only the general public but also investment professionals. It all started with the
publication of a white paper entitled ‘Bitcoin: A Peer-to-Peer Electronic Cash System’ written by a
yet-to-be-identified author under the pseudonym of Satoshi Nakamoto in October 2008, which was
immediately followed by the release of the Bitcoin protocol as an open source software in January
2009. The explosive attention with Bitcoins, driven at first by cypherpunks and later by early
individual adopters has been expanded to a much more mainstream form of investment. Such a
furious pace of progress demonstrated by Bitcoin has inspired and sparked a plethora of supplies
of other cryptoassets to such an extent that the aggregate market value of established cryptoassets
on offer reached nearly $3 trillion at the end of 2021, dwarfing the world’s largest company, Apple,
while amassing more than 200 million users all over the world.1

Despite their proliferation, the future prospects of the cryptoassets still remain as contentious, which
splits the global investment community down the middle. Some ardent supporters argue that the
game has only just begun: given the durability and scalability of the cryptoasset networks, their
potential outside the areas of digital assets and finance is yet to be fully explored. In contrast,
skeptics have raised doubts on their underlying technological and economic concept, even criticizing
them as a gimmick with all the markings of a Ponzi scheme.2

Love them or hate them, given the size, it has grown simply too big to ignore, and a stampede
of institutional professions for these digital assets ensued.3 Traditional institutional players, with
Fidelity, Goldman Sachs, JP Morgan, Black Rocks, CME, and CBOE are but a few examples.
Institutional investors prefer investment via financial intermediaries rather than opting to hold
cryptoassets directly for several considerations and investment funds have emerged as a natural
gateway for investors to obtain cryptoasset exposure.4 Auer et al. (2022), based on a wide range
of data sources, document that flows into closed-end funds centering upon cryptoassets slowly
and steadily have grown before a sudden and dramatic surge observed during 2019. Specifically,
cumulative net inflows into investment funds has skyrocketed from about $1 billion at the end of
2018 to $7 billion in the beginning of 2020. As a result, the total assets under management are
as large as $30 billion at the end of 2021 after once reaching $60 billion over the course of that
year. It is true that this amount still represents a small fraction of the entire cryptoasset market,
but the presence of institutional professions is remarkable given the fact that this market is still in
a nascent stage. Simply put, the ‘institutionalization’ of the cryptoassets is underway on a large
scale.

Active participation of institutional investors, once it reaches a certain scale, may cause a change in
the price behavior of a cryptoasset. First, the institutionalization of the cryptoasset may induce its

1See Auer et al. (2022).
2See, for example, Taleb (2020), Roubini (2021), and Acemoglu (2021) among many others.
3See Fidelity (2021), Street (2021) and OECD (2022), among many others.
4Auer et al. (2022) document that these considerations include operational complexity, custodian safety and a

difference in accounting rules regarding unrealized capital gains on crytpoassets and investment funds.



price movement in tandem with the traditional assets classes. Second, if so, its price may become
subject to the ‘pricing rule’ prevailing in those asset classes. In this paper, if a particular cryp-
toasset satisfies the above two conditions, we claim that it is ‘domesticated.’ Thus the definition
of domestication is built upon two building blocks, the cryptoasset’s comovement in price with a
mainstream asset class and its price alignment with that asset class. Based on this definition, we in-
vestigate which cryptoasset has been domesticated and also whether the percentage of domesticated
cryptoassets has significantly increased in conjunction with the aforementioned institutionalization
process.

With respect to comovement in price, unlike the traditional financial assets, most of cryptoassets
do not accompany any future cash flows.5 Therefore, there is no reason for the cryptoasset prices
to move ‘fundamentally’ in tandem with those of the traditional assets. However, the absence of co-
movement in fundamentals does not rule out the possibility of price comovement. Barberis, Shleifer
and Wurgler (2005) argue that in economies with frictions and/or with irrational investors, comove-
ment in prices is delinked from comovement in fundamentals. They call this non-fundamentally
driven comovement as the “friction-based” and/or “sentiment-based” theories of comovement.

Barberis, Shleifer and Wurgler (2005) further subdivide them into three specific views: the category
view, the habitat view and the information diffusion view. The category view, which is proposed
by Barberis and Shleifer (2003) states that some investors allocate funds at the level of certain
categories rather than at the individual asset level. If some of the investors using categories share
correlated sentiment, and if their trading affects prices, then as they move funds from one category
to another, their coordinated demand induces common factors in the returns of assets in the same
category. The habitat view is based on the observation that many investors trade on their own
preferred habitats, i.e., only a subset of all available securities. When these investors alter their
exposure to the securities in their habitat, a common factor in the returns of these securities
is induced. Finally, the information diffusion view holds that information is incorporated more
quickly into the prices of some assets than others, primarily due to some market frictions. Among
the three views, because the cryptoassets do not generate any future cash flows, they do not
share any information with the traditional assets and it is hard to believe that the information
diffusion is behind comovement in price. The category view and the habitat view are then the only
legitimate candidates for price comovement of the cryptoassets with other asset classes, if anything.
However, these two views, despite their subtle difference in theoretical arguments, are difficult to
distinguish in an empirical analysis. For that reason, the terms ‘category’ and ‘habitat’ are used
interchangeably in Barberis, Shleifer and Wurgler (2005). Following them, we combine the two
views as the ‘category view’ in our analysis. As such, our analysis can shed a new light on the
driving force behind ‘comovement’ proposed by Barberis, Shleifer and Wurgler (2005) by testing it
in a novel and clean setup.

To begin with, we collect the individual cryptoasset data from CoinMarketCap API over the period
from January 2017 to March 2022, following Liu, Tsyvinski and Wu (2022).6 Using the biweekly
frequency data, we investigate comovement between Bitcoin and other relevant traditional assets
by employing two alternative tests. In the first test, we consider gold, dollar and S&P500 as
traditional assets against Bitcoin (and MVIS CryptoCompare Digital Asset 100 Index (MVDA),
a market cap-weighted index that tracks the performance of the 100 largest cryptoassets). We

5There exist some ways by which one can earn passive income similar to dividends in the crypto space by staking
or ‘HODLing’ a cryptocurrency. However, strictly speaking, they are more or less equivalent to stock lending income.

6We also re-examine the entire analysis with the alternative dataset collected from the Cryptocompare API. The
estimation results are not only qualitatively but also quantitatively very similar.
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examine a state-space econometric model in which there is a common factor along with asset-
specific factors (e.g., gold-specific, dollar-specific, S&P500-specific and Bitcoin-specific factors).
Therein, Bitcoin returns are designed to be potentially affected by all the factors in addition to its
own Bitcoin-specific factor. More importantly, this state-space model is equipped with a two-state
Markov chain such that a structural break is endogenously determined. Using the Bayesian MCMC
(Markov chain Monte Carlo) method, we estimate all the model parameters and state variables along
with the structural break point. The estimation results are striking! They designate a statistically
very significant break on February 21, 2020. In addition, the variance decomposition indicates that
before the break, the returns on Bitcoin were alienated from other assets and almost fully (95.6%)
explained only by Bitcoin itself, which delivers conclusive evidence that the Bitcoin market was
segmented from the traditional assets. In contrast, after the break, the majority of its returns,
62.7%, is explained by the S&P500 returns whereas the self-explanatory portion of its variance has
remarkably shrunken to as small as 24.9%. Even after the structural break, the Bitcoin returns
are not significantly related with dollar and gold returns. Therefore, the claim that Bitcoin is an
alternative digital currency to traditional fiat money systems is statistically rejected. And similarly,
the claim of Bitcoin as ‘digital gold’ is also equally untenable.

One thing to notice among these results is the breakpoint, February 2020. This is precisely the
time period when the cumulative net inflows into investment funds, which began to gain the mo-
mentum in the beginning of 2019, reached the top according to the study of Auer et al. (2022).7

Consequently, the breakpoint we identified can be thought of as the date when the institution-
alization of Bitcoin gained muscle mass enough to make a statistically significant change in the
price comovement of Bitcoin with stocks, the representative risky assets. In addition, the empirical
finding that Bitcoin ‘comoves’ in price with stocks is in line with the survey of PwC (2022). It
documents that about 38% of traditional hedge funds invest in cryptoassets in the first half of 2022.
More importantly, among the most popular hedge fund strategies that invest in digital assets in-
clude multi-strategy (32%), macro (21%), equity (18%) and systematic (12%). These funds are all
exposed to equities in their investment. Therefore, we can surmise that after the break, some cryp-
toassets such as Bitcoin became to be inserted into the same ‘category’ with stocks, which induces
non-fundamentally driven comovement as suggested by Barberis, Shleifer and Wurgler (2005).

The second study on comovement is to utilize the fact that the cryptoassets trade around the clock
across the globe. Using this unique feature of the cryptoassets in their trading hours, we explore
whether the overnight returns on Bitcoin affect the overnight returns on the S&P500 index (or
Nasdaq) from the closing price of the previous trading day to the opening price on the following
business day. In testing this relationship, we include the previous day’s intraday returns on S&P500
to control for a potential of autocorrelation in S&P500.8 In addition, given the fact that the trading
hours of the U.K.’s stock market partially overlaps with the overnight closing of S&P500, we further
include the FTSE100 index return to control for the spill-over effect of inter-market stock prices.
We estimate this structural regression in the presence of stochastic volatility where the spill-over
is also allowed in the second moment, i.e., volatility. The estimation result strongly backs up the
empirical findings of the first test. Before the break, we find no evidence of spill-over effect of
Bitcoin on the stocks. In contrast, after the break, the overnight return of Bitcoin affects the
overnight returns on the S&P500 with statistical significance at 1%. This statistical significance is
maintained even when we control for the FTSE 100 returns. We also conduct a similar analysis

7See the left panel of Graph 2 therein.
8Some investment professions believe that trading patterns and trends on the intraday will influence what the

market will experience after its close.
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with the weekend returns, which are a special part of the overnight returns in order to see whether
the spill-over effect is still alive over the longer time span during which the U.S. stock market
sleeps. The test ends up with a similar result; the spill-over effect of Bitcoin on the S&P500 during
the weekend is statistically significant. Combined with the state-space analysis, these test results
signify the post-break comovement in price between Bitcoin and S&P500 Index.

Given the empirical finding that the price of Bitcoin began to move in tandem with stocks, a natural
question then arises as to whether the cryptoasset price is also aligned with the pricing rule that
stocks are subject to. This is the second building block of ‘domestication’ defined above. For that
purpose, one may consider the integration measures proposed in extant literature. Since pricing
consistency between the two markets is central in measuring integration, a benchmark pricing
model is a necessary and central input, and in thar regard, there are two alternative approaches.
The first approach, which has been popularly adopted in the international asset pricing literature,
is to evaluate integration based on on a parametric, but potentially misspecified, asset pricing
model with some pre-specified factors.9 The second approach is nonparametric and relies upon a
stochastic discount factor (SDF from hereon) as a pricing benchmark. The representative measures
developed in this line of approach include Chen and Knez (1995) and Bekaert and Urias (1996)
among others.

Since the cryptoassets differ from stocks in fundaments, some extant asset pricing models that show
strong performance in explaining cross-sectional dispersion of stock returns may not be applicable.
For example, the five factor model of Fama and French (2015) is composed of the factor-mimicking
portfolios, which are built upon accounting variables such as book-to-market ratio, operating prof-
itability and investment ratio. Similarly, the original q-factor model Hou, Xu and Zhang (2015)
and its augmented version, the q5 factor model of Hou et al. (2021) also need information regarding
investment ratio, profitability and expected growth. All of those accounting-based firm character-
istics are not available for cryptoassets. In addition, even in the case that there are some available
asset pricing models, the resulting inference in the space of cryptoassets might be unacceptably
sensitive to the choice of the benchmark pricing model. With this concern, we opt for the second
approach as a natural choice in this paper.

However, domestication is different from integration, albeit closely related. Domestication refers to
a relation of a certain individual asset to a market whereas integration refers to a relation of a market
vis-a-vis another market. The reason this paper addresses domestication as opposed to integration
is twofold. Firstly, the number of cryptoassets varies even on a daily basis because screening
process of cryptoassets for listing on coin exchanges is much simpler due to the absence of listing
standards as strict as those imposed on stock exchanges.10 The wild fluctuations in the number
of cryptoassets make it difficult to construct a set of well-diversified portfolios of cryptoassets that
can well approximate and represent the attainable set of the cryptoasset market.11

Secondly and related, it is hard to believe that the cryptoasset market as a whole is mature enough
to be ready for a test on whether it is integrated with the stock market. As of yet, the institution-

9See, among many others, Stulz (1981), Adler and Dumas (1983), Cho, Eun and Senbet (1986), Korajczyk and
Viallet (1989) and Korajczyk (1996).

10The major U.S. stock exchanges are equipped with strict listing standards that encompass the rules on corporate
governance and audit committees, under the supervision of the Securities and Exchange Commission.

11Fama and French (2015) argue that a set of poorly diversified portfolios have low power in tests of asset pricing
models. In fact, such a set also results in a large ‘size’ problem in the tests as well. In addition, if the set does not
sufficiently approximate the attainable set of the cryptoasset market, it under-represents it and yields a large amount
of inference errors in diagnosing the integration of two markets.
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alization is still in its early stage. As such, we focus on whether a certain individual cryptoasset
is domesticated enough to meet the minimum requirements for admissibility in the pricing rules
governing the stocks.

A natural candidate measure would be the distance measures suggested in a series of seminal studies
by Hansen and Jagannathan. To begin with, we construct a global minimum-norm SDF (m∗x) from a
set of stock basis assets, which are the Fama-French 25 portfolios sorted on book-to-market and size
coupled with the locally risk-free asset in our analysis. Then we add a certain cryptoasset to the set
of basis assets and, from this augmented set of basis assets, we re-construct the two minimum-norm
SDFs, one with no restriction (referred to as m∗xa) and the other with the restriction that its mean
is the same to that of m∗x (referred to as m∗xa |µm). Then, we measure a distance between m∗xa (or
m∗xa |µm) and m∗x, where the distance is measured by the second norm of the difference between the
two SDFs, i.e., ‖m∗xa−m

∗
x‖ (or ‖m∗xa |µm−m

∗
x‖). ‖m∗xa |µm−m

∗
x‖ is equivalent to the amount of the

upward shift in the Hansen-Jagannathan bound at the mean of m∗x (= µm) whereas ‖m∗xa −m
∗
x‖

is tantamoun to the Hansen-Jagannathan distance that is modified such that a thoeretical SDF in
the original Hansen-Jagannathan distance is replaced by the nonparametric SDF, m∗x.12

Through an extensive analysis, we show that these two distance measures can be re-written as the
ratio of the absolute pricing error of the cryptoasset to its idiosyncratic risk, where the pricing error
(α∗c) is based on using m∗x as the relevant benchmark SDF. The idiosyncratic risk is the replication
error, which is the second norm of residuals from a regression of the cryptoasset’s payoff against the
original set of basis assets. Specifically, the second-norm of residuals from the regression ‘without’
intercept (‖ωc‖) is the idiosyncratic risk relevant for ‖m∗xa −m

∗
x‖ while that of residuals from the

regression ‘with’ intercept (‖e‖) is the idiosyncratic risk corresponding to ‖m∗xa |µm − µ∗x‖. As

such, the two distance measures, |α
∗
c |

‖ωc‖ and |α∗c |
‖ec‖ can be interpreted as ‘normalized’ absolute pricing

errors where normalization is made by the idiosyncratic risks. Accordingly, the cryptoassets which
move less in tandem with the stocks are more likely to be sorted as domesticated, which is at
odds with the first property required for domestication, i.e., comovment! To make matters worse,
the pricing errors are empirically shown to be strongly correlation with the idiosyncratic risks so
that the large pricing errors are inclined to be neutralized by their corresponding idiosyncratic
risks. To remedy this counter-intuitive problem innate in the distance measures, we introduce
an amplification factor, which is either linearly (‖ωc‖ or ‖e‖) or quadratically (‖ωc‖2 or ‖e‖2)
proportional to the idiosyncratic risks and adjust the distance measures by multiplying them by
the amplification factor. As a consequence, for each distance measure, we can consider three
alternative candidate domestication measures depending on the magnitude of the amplification
factor, but one candidate measure is found to be shared by the two distance measures so that,
all told, we end up with five candidate measures. Then a remaining question is which candidate
measures are more valid, i,e., more correct in distinguishing between domesticated cryptoassets and
non-domesticated ones.

To answer this question, we come up with a two-step estimation procedure. In the first step, we
apply each candidate measure to every individual stock available in the CRSP (the Center for
Research in Security Prices) and construct a cross-sectional distribution. Because this distribution
is composed of all available individual stocks, which are fully domesticated by construction, it is
a natural benchmark distribution under the null that an individual asset is domesticated. In the

12The Hansen-Jagannathan bound (HJ bound from here on), which is derived in Hansen and Jagannathan (1991)
is a lower bound on the second norm of the SDF as a function of its mean. In contrast, the Hansen-Jagannathan
distance (HJ distance hereafter), which is explored in Hansen and Jagannathan (1997), measures a distance between
the minimum-norm SDF derived from basis assets and a theoretically specified (and accordingly parametric) SDF.
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second step, we estimate the corresponding measure of each individual cryptoasset and evaluate
‘where’ the estimate is located in the cross-sectional distribution computed in the first stage. This
enables us to compute the p-value of the estimated measure corresponding to that particular cryp-
toasset. If the p-value is greater than a pre-specified, for example, 2.5%, the cryptoasset is classified
as domesticated at 97.5% confidence level and, if not, it is classified as non-domesticated.

The estimation results of this novel two-step procedure for distinguishing between domesticated
cryptos and non-domesticated ones is used in the following three tests for a horse race competition
among the candidate measures. Firstly, we investigate whether the proportion of cryptoassets
sorted as domesticated by a certain candidate measure has increased after the above-mentioned
structural break. In this test, as expected, the original distance measures, α∗c

‖ωc‖ and α∗c
‖ec‖ , result in a

decrease rather than an increase in the proportion of domesticated cryptos after the break, which
is incompatible with the result of the structural break on comovment. In contrast, the candidate
measures adjusted by the linear or quadratic amplification factor, α∗c , α

∗
c‖ωc‖ and α∗c‖ec‖, show a

sharp increase in the proportion of domesticated cryptoassets after the break. Secondly, we confine
the analysis to the post-break period and examine whether the SDF built upon the cryptoassets
classified as domesticated by each measure is ‘significantly’ correlated with m∗x, the SDF of the
original stock basis assets and concomitantly whether the SDF built upon the cryptoassets classified
as non-domesticated by that measure is ‘trivially’ correlated with m∗x. To estimate those crypto-
based SDFs, we need to construct a set of crypto basis assets. We first construct the crypto basis
assets by using the cluster analysis suggested by Ahn, Jennifer and Dittmar (2009). In addition,
we conduct a bootstrapping analysis wherein the crypto basis assets are randomly selected. A nice
feature of the latter analysis is that it enables us to construct the bootstrapped distribution of
correlations by which we can test the statistical significance of correlation. Both tests add up to a
conclusion that α∗c is the best athlete as a domestication measure. Finally, to confirm this conclusion
once more, we examine the regression of the SDF of the cryptos designated as domesticated by α∗c
against a set of stock market factors (such as the five factors of Fama and French (2015) and the q5

factors of Hou et al. (2021)) and/or a set of crypto market factors proposed by Liu, Tsyvinski and
Wu (2022) and do the similar analysis for the SDF of non-domesticated cryptoassets in a separate
regression. The overall results show that the SDF of the domesticated cryptos are strongly related
with the stock market factors but not with the crypto-market factors. In contrast, the the estimation
results with the SDF of the non-domesticated cryptos are diametrically opposite; the SDF of the
non-domesticated cryptos are almost entirely explicable by the crypto-specific factors, but not by
the stock market factors at all.

All of the three tests for horse racing deliver the same conclusion: α∗c is the best-performing
measure of domestication. Going back to the issue on the post-break change in the proportion
of domesticated cryptos based on α∗c as a valid measure, we can also make a conclusion that the
proportion of domesticated cryptoassets has skyrocketed after the structural break, for example,
from 7% to 36% when a conservative domestication criterion, 95% confidence level, is adopted.
This upsurge in domesticated cryptos is in sync with the institutionalization documented in the
survey literature.

The remainder of this paper is organized as follows. In section 2, we make a brief literature view
on the recent studies on cryptoassets and discuss how this study is related to them. Section 3
investigates the econometric state-space model to identify when the cryptoassets spearheaded by
Bitcoin begin to show comovement with stocks, the first property of domestication. Therein, we
also examine the spill-over effect of the overnight returns of Bitcoin (and MVDA Index) on the
S&P500 index and the Nasdaq. In Section 4, we devise a set of potentially admissible candidate
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measures of domestication based on the two properties characterizing domestication: comovement
with stocks and subjection to the pricing rule prevailing in the stock market. The tests for the horse
race competitions and their implication are discussed in Section 5. We make concluding remarks
in Section 6. The proofs of all lemmas, propositions and corollaries are provided in Appendix.

2 Literature Review

Given a short history of the cryptoasset market, it is only recently that this market has been
studied in academia. Broadly speaking, the existing studies center upon two issues: an inter-market
relation between the cryptoasset market and other asset markets and an intra-market analysis inside
the cryptoasset market. Borri (2019) documents that the major individual cryptoassets are not
exposed to the tail risk of other asset classes such as the U.S. equitiy market and gold, while
being highly exposed to the tail risk unique to the cryptoasset market. Extending this work, Borri
and Santucci de Magistris (2021) find that crypto premium, which is defined as compensation
for skewness and kurtosis in the stochastic discount factor is not associated with a set of non-
crypto factors such as Fama-French stock market factors, VIX (volatility index) and gold index.
Most comprehensive analysis is done in Liu and Tsyvinski (2021), which construct an index of
cryptoassets and analyze its risk-return trade-off. Using the time-series analysis, they document
that the cryptoassets have no exposure to stock market and macroeconomic factors, not to mention
major currencies and commodities. Liu, Tsyvinski and Wu (2022) consider a three-factor model
composed of cryptoasset market, size and momentum factors, which is isomorphic to the Cahart’s
four-factor pricing model except for the book-to-market factor. Their empirical results strongly
support for the three-factor model in explaining the 10 long-short strategies based on cryptoasset
characteristics known to generate sizable and statistically significant excess returns. In contrast,
stock market factors show a limited explanatory power over the same set of strategies. Similarly,
Bianchi and Babiak (2021) adopt an instrumented principal component analysis (IPCA) to estimate
latent factors which govern a cross-sectional dispersion in risk premia of cryptoassets on a daily
frequency. They find that these latent factors are strongly associated with liquidity, size, reversal
and downside risks of the cryptoassets, but not related with stock market factors at all.

In sum, the above studies focus on identifying factors underlying the cryptoasset market, either
pre-specified factor-mimicking portfolios or latent factors, and examine whether these factors are
concatenated with the well-known stock market factors. All of these studies did not find any
evidence on such a link and conclude that the crypto-market is segmented from the stock market.
In addition, they also document that the factors underlying the cryptoasset market are more deeply
related with the previous return behaviors such as momentum, reversal and downside risk.

Our paper differentiates itself from these existing studies in two respects. First, the cryptoasset
market is still in an initiatory stage. As a result, this market has been experiencing a continual
vicissitude of circumstances, thereby rendering it difficult to assume a stable market wherein the
moments of the unconditional joint distributions of the cryptoasset returns do not change when
shifted in time. For example, some cryptoassets may be successful in going mainstream on the
back of institutionalization and, as a result, they have experienced a structural change in their
intra-market relations with other cryptoassets and inter-market relations with other asset classes.
As shown in Section 3 and 4, we find that there is, in fact, strong evidence on a structural break
at the end of February 2020. Therefore, there is a strong possibility of dramatic changes in their
return behavior and their relations with other assets before and after the break. The above-
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mentioned empirical studies are based on either the pre-break data or the data encompassing the
data over both pre- and post-break periods. In contrast, we decompose the data from 2017 toi
2022 into two subperiods, before and after the break. By doing so, we try to highlight the impact
of institutionalization on the cryptoassets’ inter-market relations with stocks.

Second and related, given its current stage of institutionalization, the cryptoasset market is still
in the process of establishing its own identity, thereby too premature to diagnose whether it is
fully integrated with other assets classes. Any close association of the cryptoasset with other asset
markets is more likely to occur on an individual basis rather than on a collective basis. That is
the reason this paper focuses on ‘domestication’ in lieu of market integration. Consistent with
this conjecture, we find that the majority of cryptoassets are yet to be domesticated and thus
the overall crypto market itself is still disintegrated with the stock market, which reaffirms the
empirical findings of the existing studies. However, on an individual level, some cryptoassets begin
to demonstrate domestication and not only move in tandem with stocks but also subject themselves
to the pricing rule governing the stock market. Of course, if the majority of the cryptoassets are
domesticated, then the cryptoassets would be integrated with the stocks on a market level, and
as discussed above, it is still far from integration. In that sense, our study can be thought of
as a moving image that empirically documents the ongoing ‘evolution’ of integration process. In
comparison, the existing studies are equivalent to a still image, which empirically documents the
evidence of disintegration. Accordingly, our paper is a complementary work to better understand
the empirical results documented in the extant literature.

3 Empirical Analysis of Comovment in Price

As discussed in Introduction, a few survey studies document the ongoing institutionalization of
the cryptomarket. Then a natural question is whether the institutionalization is strong enough
to induce non-fundamentally driven comovement in price between the cryptoassets and traditional
assets as suggested by the category view of Barberis, Shleifer and Wurgler (2005). Suppose that for
a set of large institutional investors, the cryptoassets belong to the same category in which certain
traditional assets are affiliated with. If these investors move money in and out of that category as a
whole, the demand pressure makes the prices of the cryptoassets and the traditional assets move in
tandem simply due to the bundle trades. As such, the price comovement between Bitcoin and the
traditional assets, which are not fundamentally disconnected can be counted as empirical evidence
in support of the category view.

Since the institutionalization of the cryptoassets is a recent episode, we investigate whether the
cryptoasset market experienced a structural break in terms of its price comovment with traditional
assets where the structural break date is unknown. In addition, we examine whether the returns
on the cryptoassets affect those on the stocks through a spill-over effect while the stock market
is dormant during overnights and weekends. If such a spill-over effect is detected, it is another
strong piece of evidence to support the category view. We examine these tests with Bitcoin and
the MVDA as the central figures.
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3.1 A Structural Break Analysis with an Unknown Break Date

The traditional assets we consider are stocks represented by S&P500 and Nasdaq Composite Index
(Nasdaq from here on), gold and dollar index. S&P500 and Nasdaq are selected to reflect the
investor sentiment in risky assets. Gold is considered because Bitcoin (BTC) is coined as a digital
gold among some proponents based on an argument that there is a finite amount of both and they
act as a store of value outside of traditional monetary systems. The dollar index is included given
the fact that Bitcoin is initially proposed as a replacement for fiat currencies.13 We denote S&P500
return or Nasdaque return at time t by St. Gold and dollar index returns are referred to as At and
Dt, respectively. Finally, Bt denotes the Bitcoin return or the MVDA return at time t.

One of the most standard approaches for measuring the comovement among various asset returns
is to decompose variance through a dynamic common factor (DCF) model estimation. In our
study, we construct a DCF model of (St, At, Dt, Bt), in which the Bitcoin return dynamics are
determined by one global factor, three local factors, and one Bitcoin-specific factor. The global
factor is a common factor across all asset returns, whereas a local factor is a local common factor
between Bitcoin and a specific category of other assets. All factors are assumed to be mutually
independent. The proportion of the total return variance of Bitcoin accounted for by the factors
quantifies the comovement between the Bitcoin and financial markets.

The DCF model we estimate is given by
St
At
Dt

Bt

 =


Gt × γS,Mt

Gt × γA,Mt

Gt × γD,Mt

Gt × γB,Mt

+


LSt × λS,Mt

0
0

LSt × λB,Mt

+


0

LAt × δA,Mt

0
LAt × δB,Mt



+


0
0

LDt × κD,Mt

LDt × κB,Mt

+


0
0
0

LBt × ψB,Mt

+


ESt
EAt
EDt
EBt

 , (1)

where
(
ESt EAt EDt EBt

)′
follows a multivariate normal distribution, N

(
0,

[
ΣMt 0

0 σ2
B,Mt

])
,

and Mt is a first-order non-recurrent two-state Markov process, taking either 0 or 1.14 The initial
state is given by M0 = 0. The transition probability of the state p00 = Pr[Mt = 0|Mt−1 = 0] from
state 0 to state 0 is to be estimated, whereas p11 = Pr[Mt = 1|Mt−1 = 1] is fixed to one. As a
result, a regime shift is permanent, and the point in time which the state changes from 0 to 1 is
the structural breakpoint. Gt is the global common factor, LSt is the local common factor between
the Bitcoin and aggregate stock indices (stock-BTC factor), LAt is the local common factor between
the Bitcoin and gold (gold-BTC factor), and LDt is the local common factor between the Bitcoin
and dollar index (dollar-BTC factor). LBt is the Bitcoin-specific factor, which is unique to Bit-
coin. These common factors are assumed to follow mutually independent and serially uncorrelated

13In June 2021, El Salvador announced the ‘Bitcoin Law,’ which made it the first nation to adopt Bitcoin as legal
tender and required businesses to accept it as payment.

14We also estimated a three-state model in order to examine the possibility of two changepoints, and found that
only two states are identified. These two states are the same as those estimated from the two-state model in terms of
timing. Thus, we can say that the model with one changepoint is more supported by the data than the model with
two changepoints.
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normal distributions. That is,
Gt
LSt
LAt
LDt
LBt


∣∣∣σ2
G, σ

2
S , σ

2
A, σ

2
D, σ

2
B
iid∼ N

(
0, diag(σ2

G, σ
2
S , σ

2
A, σ

2
D)
)
. (2)

The factor loadings are state-dependent, so that the variance decomposition of the Bitcoin return is
subject to regime shifts. The first elements of γS,Mt=0, λS,Mt=0, δA,Mt=0 and κD,Mt=0 are constrained
to be one for identifying the factors and states. LBt is the Bitcoin-specific factor and σ2

B,Mt
is its

conditional variance given the state. Note that because the 3× 3 variance-covariance matrix ΣMt

is non-diagonal, the vector of (ESt , E
A
t , E

D
t ) simultaneously captures the asset-specific factors

and the common factors between (St, At, Dt) other than the four common factors. Intuitively, if
γB,Mt=0 = λB,Mt=0 = δB,Mt=0 = κB,Mt=0 = 0, it implies no price comovement of the Bitcoin with
other financial markets before the break. In contrast, strongly non-zero γB,Mt=1, λB,Mt=1, δB,Mt=1,
or κB,Mt=1 indicates the price comovment of the Bitcoin with other financial markets after the
break, which is a necessary condition for domestication of the Bitcoin.

Our econometric approach is Bayesian, and we complete our Bayesian modeling by specifying priors
of the model parameters. Basically, our priors of the model parameters are weak and symmetric
between the states, so that the regime changes are identified and detected by the information in
the data rather than prior. The prior of all factor loadings is N(0, Vβ = 1) and the prior of ΣMt is
an inverse-Wishart distribution, IW(R0 = 2× I2, v0 = 2) for all states. The transition probability
is assumed to follow a beta distribution, Beta(a0 = 2000, b0 = 2), based on our prior belief that
the first state is highly persistent. Finally, the variances of the common factors and Bitcoin-specific
factor are assumed to follow an inverse-gamma distribution, IG(α0 = 2, δ0 = 2).

For posterior inference, we run 12,000 MCMC iterations, and use 10,000 posterior samples after
discarding the first 2,000 samples. The sample period is from January 20, 2015 to December 31,
2021. The posterior sampling algorithm is provided in Appendix B. The maximum inefficiency
factor of the model parameters is less than 5, so the effective simulation size is larger than 2,000.
This indicates convergence and good mixing of the MCMC chain.

Figure 1 shows the posterior probability estimate of the second state (i.e., state 1) over time. As
this figure displays, the posterior mode of the changepoint is estimated at February 21st of 2020. To
visualize the occurrence of the structural break, we also plot the time-varying correlations between
the Bitcoin and S&P500 returns with the moving window of 100 business days. Before the break,
the rolling correlations used to fluctuate around zero, whereas they never fall below zero after the
break. In addition, the posterior probability coupled with the rolloing correlation shows that the
structural break took place all at once rather than gradually; the domestication of Bitcoin, if it
occurs, seems to be consummated at a tipping point at which a sequence of small changes becomes
significant enough to cause a structural change. Figure 2 summarizes major critical events that
have befallen the crypto market. The derivatives exchanges, CBOE and CME, moved first with the
futures on Bitcoin, which is followed by a series of participation of major financial institutions in
the market. We can say that the cumulative pressure of institutionalization along the continuum
ultimately triggers the structural break in Figure 1.

Then, the following question is the source of the structural break. To see this, we present the
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variance decomposition result of Bitcoin return in Table 1, computed by the posterior samples of
the model parameters. The table shows that the increased comovement of Bitcoin return with
other asset returns a driving nature of the structural break. Before the break, the Bitcoin-specific
factor explains the vast majority, 95.6% of Bitcoin return fluctuations. The other assets such as
stock, gold and dollar do not have any noticeable relation with Bitcoin. However, after the break,
the stock-BTC factor accounts for 62.7% of the Bitcoin return variation whereas he role of the
Bitcoin-specific factor plunges to 24.9%. This results shows that the structural break took place
mainly on the back of strong positive comovment beween Bitcoin and S&P500.

The structural break date is critically important in the following analyses, so that we re-estimate it
with the MVDA index, a market-cap weighted index composed of top 100 cryptoassets distributed
by the MVIS CryptoCompare. The estimation results are quite similar, albeit slightly different
in the role of the gold-MVDA factor. The estimated break date is still the same, February 21st
of 2020. Again, the traditional assets were lack of any explanatory power before the break. In
contrast, herein not only the S&P500-MVDA factor but also the gold-MVDA factor is significant
in its explanatory power. In sum, February 21st of 2020 seems to be a convicing estimate of the
timing of a structural change and such a structural break took place on the back of comovement
between cryptoassets and stocks, above all things.

3.2 Overnight/Weekend Return Analysis

Given the above result, we narrow down our focus to the price movement of Bitcoin in tandem with
stocks represented by the S&P500 and Nasdaq Indices. In particular, we utilize a unique feature
of the cryptoassets that they trade around the clock across the globe unlike stocks. Specifically,
we explore whether the overnight returns on Bitcoin predicts the overnight returns on S&P500 and
Nasdaq from the closing price of the previous trading day to the opening price on the following
business day during which stocks are closed. If such a relationship is detected, the spill-over effect
between Bitcoin and stocks may not be entirely unidirectional, from stocks to cryptoassets, but
partially reciprocal; the crypto market, which is always awake, may carry the prevailing market
sentiment on behalf of the ‘category’ of risky assets while the stock market is asleep. This could be
decisive evidence that the investor sentiment is a common factor co-shared by the stocks and the
cryptoassets.

Stock markets are dormant over longer periods of time, either on a regular basis or on an irregular
basis: weekend days and holidays. These weekend/holiday returns are already included as a part
of the above-mentioned overnight return data. However, it would be interesting to see whether the
spill-over effect is still at work over such longer periods of time. As such, we single out the weekend
and holiday returns out of the overnight returns and do the same analysis separately.

In testing this relation, we include the previous day’s intraday returns on S&500 or Nasdaq to
control for a potential of autocorrelation in the stock indices. In addition, given the fact that the
U.K.’s stock market opens well before the U.S. market, we further include the part of the intraday
return on the FTSE100 index to control for the spill-over effect of the U.K.’s stock market on the
U.S. market.

Specifically, Figure 3 illustrates the time periods over which the returns on the relevant assets are
measured. SUSt , the overnight return on the stock index (S&P500 or Nasdaq), is computed for
the period from the closing of the New York Stock Exchange (NYSE) on the previous day (EST
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16:00) to the opening of the NYSE on the next business day (EST 09:30). Similarly, RBt is the
return on Bitcoin, the holding period of which overlaps with SUSt . Given that SUSt is regressed
against RBt (along with other explanatory variables), the regression result will tell us whether the
price movement of Bitcoin is able to account for the opening price of the U.S. stocks. We also
compute its corresponding realized volatility, RV B

t , which is computed from return observations
with frequencies of 1 minute.

As mentioned above, we compute SUKt , the return on the FTSE 100 index between the opening
of the London Stock Exchange (EST 03:00) and the opening of the NYSE (EST 09:00), to net
out the spill-over effect of the U.K. stock market on the U.S. stock market. We also compute
its corresponding realized volatility, RV UK

t , which is also computed from the return data with
1 minute frequency. Finally, to control for a potential of autocorrelation in the stock index, we
compute SUSt−1, which is the intraday return on the stock index on the previous day (i.e., the return
from EST 09:30 to EST 16:00 on the previous day).

Based on these data, we estimate the following autoregressive distributed lag model with stochastic
volatility (ADL-SV model). Yt is the observations available right at the opening of the NYSE. θ
denotes the model parameters. Then, the data generating process is given by

SUSt = µr + SUSt−1ρ+RBt
(
αB0 + 1tα

B
1

)
+ SUKt αUK0 + exp(ht/2)εt (3)

ht = µh + ht−1φ+ logRV B
t

(
βB0 + 1tβ

B
1

)
+ logRV UK

t βUK0 + et

where (
εt
et

) ∣∣∣∣ Yt, ht−1, θ ∼ N

(
0,

[
1 0
0 σ2

])
, and 1t =

{
0 if t = before the break
1 if t = after the break

where ht is the log stochastic volatility at time t. We introduce a dummy variable 1t, in order to
examine whether there exits a structural change in the spill-over effect after the break where we
take February 21, 2020 as the breakpoint following the estimation result in the above structural
break analysis.

We assume a weak prior of the model parameters such that

µr, ρ, α
B
0 , α

B
1 , α

UK
0 , βB0 , β

B
1 , β

UK
0 , µh ∼ N(0, 0.25)

φ ∼ N(0.95, 0.25), and σ2 ∼ IG(0.5, 0.1),

where IG(·, ·) is an inverse gamma distribution characterized by two parameters: a shape parmaeter
and a scale parameter. All the parameters are mutually independent a priori. The prior mean of
φ is 0.95, considering the persistence of volatility that financial asset returns commonly exhibit.

We consider two aggregate stock returns: S&P500 and Nasdaq. The sample period is the same
as in the above structural break analysis, but the sampling frequency is daily instead of weekly.
We estimate the model parameters and stochastic volatility using the posterior sampling algorithm
suggested by Omori et al. (2007).

The estimation results are presented in Table 2. The key parameter we are interested in is αB0 +αB1 ,
which detects the explanatory power of the Bitcoin returns on the overnight returns on the U.S.
stocks after the break. The key finding is that the Bitcoin return has a significant explanatory power
of the U.S. overnight stock returns after the break regardless of whether the U.K. stock market
effect is controlled or not. The coefficient of RBt in the mean equation has a positive posterior
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mean and small posterior standard deviation. Specifically, as for the S&P500, the coefficient shows
a dramatic increase from -0.001 to 0.020 in the absence of the FTSE100 and from 0.000 to 0.011 in
the presence of the FTSE100 as a controlling variable. The post-break coefficients are so precisely
estimated that the 99% credibility intervals do not include zero, whereas the pre-break ones are
all insignificant. Although the scales of the RBt coefficient look much smaller than those of SUKt ,
they are not comparable on a par, considering that the fluctuation of Bitcoin return is much larger
than the stock return. One thing to mention is that the spill-over effect of Bitcoin on S&P500 is
demonstrated in the volatility before the break but such an effect vanished after the break. That
is, Bitcoin changed its sphere of influence from the volatility to the mean of the S&P500 overnight
returns in the wake of the structural break.

The estimation results on Nasdaq are similar but the scales of the spill-over effect are somewhat
stronger as shown in the bottom panel of Table 2. The posterior means jumped from -0.001 to 0.045
in the absence of the FTSE100 and from 0.000 to 0.032 in the presence of the FTSE100. As such,
the post-break coefficients are larger than those in the case of S&P500. All of them are statistically
significant whereas the pre-break means are not, which is consistent with the estimation results in
the case of S&P500. Overall, we can summarize that the spill-over effect of Bitcoin is more evident
in Nasdaq, which is heavily prone toward the technology sector as its constituents.

Table 3 summarizes the estimation results on the weekend/holiday returns. The overall results are
similar to those in Table 2; after the break, the spill-over effect of Bitcoin on the U.S. stock indices
are alive and well over the longer periods of time when the U.S. stock markets are closed, whereas
they are not before the break. In the upper panel, the post-break sensitivity of the S&P500 to
Bitcoin, which is captured by RBt , is 0.020 and 0.010, without and with being controlled for the
FTSE100 respectively. These estimates are similar to their corresponding values on the overnight
returns, 0.020 and 0.011 presented in Table 2. As such, the spill-over effect seems to be robust to
the time span of dormant stock market. However, this conclusion is overturned in the estimation
results on the Nasdaq, which is tabulated at the bottom panel of Table 3. The post-break coefficients
of RBt are 0.057 and 0.035 without and with the FTSE100 respectively, and these estimates are
larger than the corresponding estimates in the analysis on the overnight returns, 0.045 and 0.032
presented in Table 2. Therefore, the spill-over effect is rather strengthened, if any, over the longer
horizon in the Bitcoin-Nasdaq relationship. This result insinuates the fact that the crypto market
represented by Bitcoin is more likely to move in tandem with technology stocks, which share the
market sentiments with it, in response to fresh developments in the economy.

4 Measurement of Domestication: Theory

A full-scale analysis of domestication traces its history back to the study of Darwin (1875), who tried
to identify a suite of altered morphological, behavioral and physiological traits that are common
across domesticated animals. He referred the cluster of such altered traits exhibited by domesticated
species as ‘domestication syndrome.’ Herein, we also attempt to develop an admissible measure
of domestication by identifying the traits that are shared by domesticated assets, but not by non-
domesticated ones. Then, what would be the generic traits that should be displayed by domesticated
assets in the financial market? Undoubtedly comovement could be counted as the most important
trait required for domestication. If the price of a cryptoasset fluctuates independently of the
domesticated market, we can say that it trades in a disparate and segmented market of its own and
thus is not tamed yet. The structural break analysis coupled with the ADL-SV estimation in the
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previous section indicates that Bitcoin has begun to co-move in price with the major stock indices
since the structural break it experienced at the end of February, 2020. Therefore, we can say that
Bitcoin currently exhibits this trait. However, comovement may not be a unique trait that should be
carried by domesticated assets. Once comovement is accepted as a trait, it also invites a concomitant
trait, the subjection of the cryptoasset to the price system prevailing in the domesticated market.
If the cryptoasset co-vary in price with the domesticated assets, its price would not be determined
in isolation any more and should be determined via the covariances with the domesticated assets,
which are not trivial anymore. That is, investors evaluate its price by referring to the value of the
domesticated assets as benchmarks where the prices of those domesticated assets are governed by
a certain pricing rule.

If we accept these two traits as the domestication syndrome, a domestication measure, which
distinguishes between domesticated cryptoassets and non-domesticated ones, should satisfy the two
traits. To develop such a measure, we begin with the premise that the stock market is incomplete
and is represented by a set of stock basis assets, each constituent of which is assumed to be ‘already
domesticated.’ In addition, we assume that the price system in such a market is viable, i.e., not
allowing for any violation of the Law of One Price (LOP hereafter), or equivalently guaranteeing
the existence of the weak-form SDFs which correctly price all the stock basis assets. Then we release
an individual cryptoasset into the stock market and price it using the minimum-norm SDF among
the above-mentioned SDFs. Theoretically speaking, the resulting pricing error associated with the
cryptoasset does not necessarily mean that the crypto is genuinely mispriced. Unless its payoff is
perfectly replicable by the stock basis assets, we can always find another SDFs which can correctly
price not only the basis assets but also the given cryptoasset. That is, the admissible set of SDFs
shrinks when the set of basis assets is augmented by the cryptoasset in consideration. Then, in light
of the series of seminal studies contributed by Hansen and Jagannathan, a natural candidate for a
domestication measure would be a distance measure, which measures the degree of contraction of
the admissible set of SDFs. The resulting distance measure is akin to the amount of upward shift
in the HJ bound or the HJ distance measure. Then a remaining question is whether this distance
measure satisfies the above-mentioned two traits. This is what we will analyze in this section. For
brevity’s sake, we use ‘cryptoasset’ and ‘crypto’ interchangeably.

4.1 Market Environment

We consider an economy characterized by a probability space triplet (Ω,F,P) where F is a sigma
algebra of subsets of Ω, and P is a probaility measure on (Ω,F). We also define L2, the linear space
of square-integrable random variables on the triplet. L2 is endowed with its usual inner product
〈x1|x2〉 = E(x1x2) and norm ‖x‖ =

√
E(x2) and thus L2 is a Hilbert space.

Assumption 1: There are N ‘domesticated’ basis assets, the payoffs of which are denoted by
{xi}Ni=1. xi ∈ L2 ∀ i is a total return on a dollar investment in basis asset i. The basis assets do
not include any redundant assets, i.e., E(xx′) has a full rank, where x = (x1 x2, · · · , xN )′.

Assumption 1 states that each of these N basis assets is fully domesticated. Without loss of
generality, we assume that these assets are stocks, thereby calling them ‘stock basis assets.’ As
such, a crypto, if domesticated, should display the similar traits that are shared among stocks.

Based on these basis assets, we define the following attainable set, A(x), which is a payoff set of all
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portfolios constructable based on the basis assets, x:

A(x) =
{
y ∈ L2 such that y = θ′x, θ ∈ RN

}
.

The attainable set is conditional upon the basis assets simply because the set of obtainable portfo-
lios are determined by the basis assets. If θ′lN = 1 where 1N is a N -dimensional column vector of
ones , θ becomes a vector of portfolio weights. Since it is a set of payoffs, A(x) ⊂ L2. In particular,
set A increases with the number of basis assets, i.e., A(xN ) ⊂ A(xM ) if x′M = (x′N x′M−N ) and
A(xM−N ) 6⊂ A(xN ) where M > N . Simply put, adding more assets to the existing basis assets en-
larges the attainable set as long as the additional assets are not perfectly replicable by the exisiting
basis assets. We assume that even when we include all available marketed assets, the market is still
incomplete:

Assumption 2: The capital market is incomeplete even when all traded assets are adopted as
basis assets such that

max
x

A(x) ⊂ L2 and max
x

A(x) 6= L2.

This assumption will be shown to be critical below. We also define the price functional associated
with A(x) such that

q(y) =
{
θ′lN such that y = θ′x and θ ∈ RN

}
.

The price functional indicates that all element of A(x) is marketable, i.e., its fair value must be a
singleton, otherwise it violates the LOP, a necessary condition for a stricter no-arbitrage condition.
Following the seminal work of Hansen and Jagannathan (1991), we establish the following lemma
on the existence of the global minimum-norm (GMN) SDF on the basis assets:

Lemma 1: Given the mutually non-dependent domesticated basis assets, x, there always exists a
unique attainable stochastic discount factor, m∗x ∈ A(x) which satisfies

E(m∗x · x) = lN ,

and m∗x = θ′xx where θx = E(xx′)−1lN . In addition, the set of admissible mxs, which satisfy
E(mx · x) = lN is a set of orthogonal extensions of m∗x such that

M(x) =
{
mx|mx = m∗x + εx where εx ∈ A(x)⊥,

}
where A(x)⊥ is an orthogonal complement of A(x). Since the market is incomplete, M(x) is not a
singleton set, i.e., M(x)− {m∗x} 6= ∅. m∗x is the minimum-norm SDF, ‖m∗x‖ = min ‖mx‖.

Strictly speaking, not all of mx ∈ M(x) are valid SDFs. Harrison and Kreps (1979) show that
the existence of mx rules out any violation of the LOP condition, but does not rule out an op-
portunity of arbitrage transactions. The no-arbitrage condition states that nonnegative payoffs
which are strictively positive with positive probability should be positively priced. To gaurantee
the absence of such arbitrage opportunity, an additional restriction is needed such that the SDF
should be positive with probability one, i.e., mx � 0. The set of strictly positive SDFs is de-
fined as M++(x) = {mx|E(mx · x) = lN and mx � 0} and thus M++(x) ⊂ M(x). In that sense,
mx ∈ M(x) is called a weak-form SDF while mx ∈ M++(x) is called a strong-form SDF. In this
paper, we focus on the weak-form SDF for econometric tractability that will be discussed in the
next section.
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4.2 Domestication Syndrome: Two Traits

Into the above financial market, we introduce a particular individual crypto, c, which is character-
ized by its payoff, xc ∈ L2. We make the following assumption for practical convenience.

Assumption 3: xc is not attainable by the basis assets, i.e., xc /∈ A(x).

Thus, we assume that the crypto’s payoff is not perfectly replicable by the basis assets. From
the projection theorem, xc can be decomposed into

xc = Px(xc) + ωc,

where Px(·) : L2 → A(x) is the projection operator from any point in L2 onto A(x). Px(xc) ∈ A(x),
and therefore ωc ∈ A(x)⊥. Assumption 3 is equivalent to a statement that ωc 6= 0. Because
Px(xc) ∈ A(x), there exists some φc ∈ RN such that Px(xc) = φ′cxc where φc = E(xx′)−1E(xxc).

Let xa denote an xc-augmented payoffs, xa = (x′ xc)
′. Then, A(xa) and M(xa) refer to its cor-

responding attainable set and the set of weak-form SDFs respectively. Assumption 3 dictates the
following lemma:

Lemma 2: A(x) ⊂ A(xa) and A(x) 6= A(xa) under Assumption 3.

Lemma 2 is a trivial outcome of the property that if any non-dependent asset payoff is added,
the extended attainable set is enlarged in a strict sense.

Lemma 3: M(xa) 6= ∅ under Assumption 3. In addition, M(x) ⊃M(xa) and M(x) 6= M(xa).

Lemma 3 states that we can always find a set of admissible SDFs that can correctly price the
xc-augmented basis assets; that is, they can price not only the stock basis assets but also and the
given crypto. In addition, because such SDFs are required to price the crypto on top of the stock
basis assets, more restrictions are imposed on the SDFs, thereby the resulting admissible set of
SDFs being smaller.

Now that we understand a change in the admissible set of SDFs induced by the individual crypto,
we are ready to discuss the economically legitimate measure of domestication. Intuitively, a non-
domesticated cryptoasset is isolated and accordingly its price movements are not related to the stock
basis assets. That is, the non-domesticated cryptoasset, like a wolf, maintains its own indigenous
‘wildness.’ In contrast, if the cryptoasset becomes sufficiently domesticated, then it should show a
domestication syndrome, which refers to a suite of certain traits as discussed above. We suggest
two critical traits that should be shared by domesticated cryptos: comovment and price alignment.
We discuss these two traits below.

(1) First Trait: Comovement

The process of domestication involves adaptation. It begins with capturing and keeping the wild
animals in captivity and making them adapt to a captive environment. Price (1984) states that
the transition from free-living to captive status is often accompanied by changes in availability
and accessibility of shelter, space, food and water and by changes in predation and the social
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environment. These changes result in the development of the domestic phenotype, the observable
traits of the animals as a consequence of environmental influences. In a similar vein, comovment is
a necessary trait displayed by a croptoasset undergoing domestication once it is kept in captivity
by a large community of institutional profession.

Specifically, with respect to anmial behavior, domestication has altered certain behaviors because
of man’s role as a buffer between the animal and its environment. Similarly, in the realm of
cryptos, price behavior may be altered because of institutional investors’ role as a buffer between
the crypto and its initial market environment. A clue could be found in the category view of
comovment proposed by Barberis and Shleifer (2003). The institutionalization of a cryptoasset
implies that a large community of institutional investors incorporates it as a component asset at
par with stocks in their portfolios. Since they trade this category as a ‘bundle’, they buy and
sell the cryptoasset simultaneously with stocks. This trade induces common factors in the returns
of the cryptoasset and the stocks. All in all, the price co-movement is a prominent sign that
the cryptoasset is sufficiently institutionalized and domesticated by the ‘at-scale’ participation of
institutional investors who allocate funds across at the level of this category. As such, comovement
in price is the most indisputable trait that a crypto should display once it is domesticated.

(2) Second Trait: Price Alignment

Strictly speaking, domestication is different from taming. Driscoll, Macdonald and O’Brien (2009)
state that taming is conditional behavioral modification of an individual whereas domestication is
permanent genetic modification of a bred lineage that leads to a heritable predisposition toward
human association. The existing models of animal domestication are separated between domestica-
tion as constituting a form of domination or a type of mutualism. However, revisiting the metaphor
of the domus, which means house in Latin, domesticated animals are, in general, cultivated to live
symbiotically alongside humans, thereby being predisposed to be tame. Similarly, cryptoassets, if
fully domesticated, should exhibit a trait of being tamed such that their prices are subject to the
pricing rule prevailing in the existing domesticated market, i.e., the stock market in our case. Of
course, this price alignment of the cryptos to the stock market comes into play only if the first trait
is sufficiently manifest.

(3) Intuition Behind Economic Representation of Domestic Syndrome

Here we discuss how to accommodate the above-mentioned two traits of domestication in the
existing framework of asset pricing. The purpose is to establish some key economic intuitions,
thereby its analysis somewhat heuristic and not rigorous. To do so, we begin with considering
a crypto, the price of which is Pc. Its gross return is xc. It is not fully domesticated, thereby
xc /∈ A(x). However, from Lemma 3 we know that there exists at least one mxa = m∗x+εc ∈M(xa)
where εc is an orthogonal extension of m∗x which validates the market prices of the stock basis
assets and the crypto. In order to emphasize that such an extension is specific to the particular
cryptoasset, xc, we change its subscript from x in Lemma 1 to ‘c.’ The fundamental valuation
equation of the crypto asset is Pc = E[(m∗x + εc) · Pcxc], which results in:

1 = E[(m∗x + εc) · (Px(xc) + ωc)]

= E[m∗x · Px(xc)] + E[εc · ωc]. (4)
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Equation (4) states that the normalized price of the crypto, one dollar, is composed of two com-
ponents. In the first term, Px(xc) is the projected component of xc and belongs to A(x). In other
words, it is the part of the crypto’s payoff, which is replicably by the stock basis assets and such

a replication, φ′cx, is built upon its comovement with the basis assets, φc = E(xx′)−1 E(xxc) . At

the same time, this is the part of the payoff which should be subject to the incumbent pricing rule
governing the stock market, m∗x. If so, E[m∗x · φ′cx] = φ′clN and thus the two terms in Equation (4)
can be broken down into the following two separate fundamental valuation equations:

φ′clN = E[m∗x · Px(xc)] (5)

1− φ′clN = E[εc · ωc]. (6)

This decomposition of the price of xc is seemingly natural, but it has a profound economic impli-
cation. When an investor purchases this crypto, she conceives of it as a portfolio or bundle of two
separate assets, Px|c and ωc. As such, the payment of one dollar is tantamount to a combination of
two separate payments, φ′clN for the replicable payoff Px(xc) and 1 − φ′clN for the non-replicable
payoff ωc. If Equation (5) holds, the pricing alignment is satisfied. In contrast, Equation (6) shows
how ωc, the non-attinable part of xc, is priced. How to interpret Equation (6)? Equation (6) is not
a pricing equation. That is, it does not say that the outcome of solving the right-hand-side of Equa-
tion (6) is 1− φ′clN . Rather, it is the other way around. If Equation (5) holds, an econometrician
is left with 1− φ′clN , the unexplained remaining dollar amount, 1− φ′clN . Then, εc is determined
to satisfy Equation (6) and eventually Equation (4). That is, εc is not an observable variable but a
sort of slack variable, which is determined to equate 1− φ′clN to E[εc ·ωc] in Equation (6); it plays
a role of a buffer between 1− φ′clN and ωc.

Under the assumption that Equation (5) holds, 1 − φ′clN can be regarded as an inverse measure
of comovement, albeit indirect. Its underlying reasoning is as follows. Since the sum of the two
component assets’ prices are equal to a dollar by normalization, φ′clN is the relative weight of the
replicable payoff in the price of xc, whereas 1 − φ′clN is the relative weight of the non-replicable
payoff in the price of xc. That is, φ′clN and 1 − φ′clN measure how much portions of the crypto’s
price are determined by the replicable payoff and the non-replicable payoff respectively. To better
understand this, suppose the investor pays the entire price of xc, one dollar, as a compensation for
Px(xc) and is not willing to pay any for ωc. In such a case, 1 − φ′clN = 0. The investor is not
willing to pay any for the non-replicable payoff since this risk might be diversified away once this
crypto is incorporated into his or her optimal portfolio. That is, if the institutionalization of this
particular crypto is fully accomplished, φ′clN = 1 and φc becomes a vector of investment weights
on the stock basis assets. In sum, we can say that Equation (5) reflects the price alignment trait
and φ′clN = 1 is the comovment trait.

The above interpretation of 1−φ′clN as a measure of comovment is valid only if the pricing alignment
is satisfied; i.e., Equation (5) holds. Unfortunately, we do not know whether φ′clN is the actual price
that the investor pays for Px(xc). All we can observe is the one-dollar bill that the investor pays
for the entire payoff, xc. To discern how much he or she actually pays for Px(xc), Px(xc) should
be traded individually, i.e., it should be marketable, but it is not. Therefore, we cannot directly
test whether (5) holds or equivalently whether the pricing alignment is satisfied. However, despite
the impossibility of testing Equation (5), 1−φ′clN still offers a solid foundation for the two critical
domestication traits. To see this, suppose that the investor actually pays the (non-normalized)
price for the attaianble payoff, (φ′clN + ηc)Pc for Px(xc). That is, in terms of percentage of price,
it is mispriced by ηc. To focus on the impact of ηc, we assume that Equation (6) still holds in the
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sense that the marginal investor who determines the equilibrium price prices ωc by using εc as the
pricing kernel. In such a case, an econometrician, who is not aware of the mispricing, projects the
crypto’s payoff on the stock basis assets and establishes the following valuation equation based on
an alternative orthogonal extension, εcη:

(1 + ηc)P = E[(m∗x + εcη)(Pc(xc) + ωc)P]

=⇒ 1 = E

[
m∗x ·

Px(xc)

1 + ηc

]
+ E

[
εcη ·

ωc
1 + ηc

]
,

and the econometrician continues to decompose it into

φ′cηlN = E

[
m∗x ·

Px(xc)

1 + ηc

]
(7)

1− φ′cηlN = E

[
εcη ·

ωc
1 + ηc

]
. (8)

Then, the wrongly estimated projection parameters, φcη is, in fact, φc/(1+ηc), and thus 1−φ′cηlN =

1− φ′clN
1+ηc

. Accordingly, the econometrician becomes to retrieve εcη from the following equation:

E [εcη · ωc] = 1− φ′clN + ηc, (9)

which is equivalent to ηc + E[εc · ωc]. Therefore, in the presence of mispricing in the crypto, εcη is
determined to reflect not only the comovment, 1−φ′clN but also the pricing error, ηc. Of course, the
econometrician is not able to distinguish these two. What Equation (9) and equivalently Equation
(8) tell us is that 1 − φ′cηlN (or εcη that is determined by it) is the key composite variable, which
contains information about the both domestication traits, comovement and pricing alignment.
Therefore, a desirable measure of domestication should be built upon εcη.

Before moving on, one thing to mention is ωc. ωc is the crypto-specific idiosyncratic component of
xc, which reflects the replication error. If the crypto were perfectly replicable by the stock basis
assets, it would be zero. In such a case, the crypto would be a perfect target of a genuine arbitrage
transaction. If not, the arbitragers may consider a statistical arbitrage, which is exposed to the
volatilty of ωc. However, if its volatility is excessively large, they would not consider this crypto
as a target for an arbitrage transaction because of a concern about the excess risk that they have
to bear during the transaction. As such, its volatility is a de facto measure of comovement of the
crypto from the perspective of investment professions; the larger the volatility is, the less strongly
the crypto comoves with the stock basis assets. Given that the volatility of ex|c reflects comovement,
it is highly like to be positively associated with |1− φ′clN |, which subsumes information regarding
comovement along with pricing alignment. If such a positive correlation is sufficiently strong, that
is another piece of evidence that |1− φ′clN | carries information about comovement. Of course, this
is an empirically testable question and will be explored in the next section.

4.3 Nonparametric Domestication Measures

Following the above discussion, we construct a set of candidate domestication measures based on the
two traits, comovement and price alignment. We a priori remove parametric measures from the list
of candidates for two reasons. Firstly, a parametric measure requires a theoretical SDF delivered by
a particular asset pricing model. However, such an approach is subject to a misspecification error of
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the adopted asset pricing model, which could be excessively substantial.15 Secondly, due to the lack
of accounting chacteristics associated with the cryptoassets, the popular Fama-French three-factor
or five-factor models and the q-factor model are not applicable. Consequently, we have no choice
but to rely upon the nonparametric approach in building up a domestication masure. In addition,
as discussed in the previous section, εc, the orthogonal extension of the SDF, is the key composite
variable which retains the information regarding the two domestication traits, comovement and
pricing alignment. As such, we center upon εc in search of a domestication measure.

(1) Mean-Second Norm Bound of SDFs

We begin with a full-fledged formal analysis of Equation (4) in a more general framework. We
extend the global minimum norm SDF, m∗x, to a full set of SDFs which differ in their means, µm.

Lemma 4: Given the the stock basis assets, x and an arbitrary expected value of the SDF, µm, the
minimum-norm SDF is

m∗x|µm = µm + (lN − µmµx)′Σ−1
x (x− µx),

and its corresponding squared norm is

E
[
m∗2x|µm

]
= inf ‖mx|µm‖

2 = (1 + ax)µ2
m − 2bxµm + cx, (10)

where
ax = µ′xΣ−1

x µx, bx = µ′xΣ−1
x lN , and cx = l′NΣ−1

x lN ,

and µx and Σx refer to the mean vector and the covariance matrix of the stock basis assets’ payoffs
respectively.

Lemma 4 basically describes the HJ bound with slight adjustment. For convenience, we modify the
HJ bound from the original mean-standard frontier of the SDF to the corresponding mean-second
norm frontier of the SDF. Equation (10) shows that the relation between µm and ‖m∗x|µm‖

2 is
parabolic. It can be rewritten as:

E(m∗2x|µm)

1 + ax
−
(
µm −

bx
1 + ax

)2

=
(1 + ax)cx − b2x

1 + ax
. (11)

ax > 0 from the positive definiteness of Σ−1
x , which comes from the fact that Σx itself is positive

definite. Therefore, the mean-second-norm frontier of the SDF, i.e., the relation between µm and

‖m∗x|µm‖ =
√
E(m∗2x|µm) is a rectangular hyperbola. Its verticality or horizontality depends on the

sign of (1 +ax)cx− b2x. It can be shown that it is strictly positive so that it is a vertical rectangular
hyperbola.16

15For example, Hou, Xu and Zhang (2020) show that about 67 percent of 447 published anomalies fail to be
replicated once the better asset pricing model such as the q-factor model is used as a benchmark. Such results
demonstrates the fact that a test on the domestication of a crypto could be very sensitive to the choice of the
benchmark asset pricing model.

16Σ−1
x is symmetric, thereby having a spectral decomposition

Σ−1
x = UDU ′,

19



Equation (10) immediately delivers the global minimum norm such that:

‖m∗x‖2 = min
µm

E
(
m∗2x|µm

)
=

(1 + ax)cx − b2x
(1 + ax)

where µ∗m = E(m∗x) =
bx

1 + ax
. (12)

We can apply the same analysis to the augmented set of assets, xa. The corresponding square of
the minimum-norm of the SDF with the same mean is

inf ‖(mxa |µm)‖2 = E
[(
m∗xa |µm

)2]
= (1 + axa)µ2

m − 2bxaµm + cxa , (13)

where
axa = µ′xaΣ−1

xa µxa , bxa = µ′xaΣ−1
xa lN+1, and cxa = l′N+1Σ−1

xa lN+1.

µxa and Σxa are the N×1 mean vector and (N+1)×(N+1) convariance matrix of xa respectively.
Based on the two mean-squared second-norm bounds, we can quantify the upward shift in the
frontier induced by the augmentation of the cryptoasset to the stock basis assets.

Proposition 1: Given µm, the difference in the squared second-norm between the minimum-
norm SDF of the stock basis assets and its corresponding minimum-norm SDF of the augmented
set that share the same mean, µm, is

‖m∗xa|µm‖
2 − ‖m∗x|µm‖

2 =
α∗2c|µm
‖ec‖2

(14)

where
α∗c|µm =

(
µc − β′cµx

)
µm −

(
1− β′clN

)
, (15)

and ‖ec‖2 is equal to σ2
ec, the variance of residuals, ec = xc − µc − β′c(x − µx) given βc = Σ−1

x Σxc

with Σxc = E [(x− µx)(xc − µc)]. The two bounds are tangent, i.e.,

‖m∗xa|µm‖
2 − ‖m∗x|µm‖

2 = 0 at µm =
1− β′clN
µc − β′cµx

.

Equation (14) coupled with (15) states that the difference in the squared norm between the two

where the columns of U are orthonormal eignevectors, i.e., UU ′ = IN and D is a diagnonal matrix with eigenvalues,
λ′ = (λ1, λ2, · · · , λN ). Again, Σ−1

x is positive definite so that all eigenvalues, {λi}, the diagonal terms of D, are
strictly positive. Thus, we can rewrite

ax = (U ′µx)′D(U ′µx) = λ′a2
x =

N∑
i=1

(√
λiaxi

)2

bx = (U ′µx)′D(U ′lN ) = λ′(ax ◦ cx) =

N∑
i=1

(√
λiaxi

)(√
λicxi

)
cx = (U ′lN )′D(U ′lN ) = λ′c2

x =

N∑
i=1

(√
λicxi

)2

where ax = U ′µx and cx = U ′lN , and ◦ is an operator of element-wise product, i.e., a dot product. Therefore,
axcx ≥ b2x from the Cauchy-Schwarz inequality, which results in 1 + axcx − b2x > 0. Combined with ax > 0, it proves
that the right-hand side of Equation (11) is strictly positive. Therefore, when we draw a rectangular hyperbola with

µm as x variable and
√
E(m∗2x|µm

) as y variable, it is a ‘vertical’ rectangular hyperbola.
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SDFs is parabolic, which is not surprising because the difference between any two parabolic func-
tions is, in general, parabolic. More importantly, the difference is nonnegative, which is consistent
with Lemma 3, which states that the admissible set of SDFs shrinks when the number of as-
sets increases. One interesting finding is that the two bounds coincide at one particular point,

µm = 1−β′clN
µc−β′cµx

. This is a unique feature which emerges when a single asset is added to the basis
asset. Figure 4 illustrates these main results of Proposition 1. It shows that adding the cryptoasset
to the stock basis assets results in an upward shift in the frontier and the two frontiers meet with
tangency at the single point.

Corollary 1: When an individual cryptoasset is added to the basis assets, the mean-squared second
norm bound of the SDF does not move up if the following two conditions are satisfied:

β′cµx = µc and β′clN = 1. (16)

The above corollary states that adding the cryptoasset to the basis assets does not result in the
upward shift in the frontier if and only if the two conditions are satisfied. Note that βc is the
coefficient of a regression of xc on x with an intercept such that

xc = βc0 + β′cx+ ec. (17)

Consequently, E(ec) = 0 and βc0 = µc − β′cµx. Equation (17) is an outcome of projecting xc on
(1 x′)′ as opposed to x such that P(1 x)(xc) = βc0 + β′cx. The first condition, β′cµx = µc states that
the expected (gross) return on the crypto equals the expected return on the replicating portfolio
that is constructed by using βc as the vector of portfolio weights. This condition is similar to the
classic Jensen’s alpha, a measurment of pricing errors. However, for it to be so, βc should be a
vector of weights; i.e., its sum should be unity, β′clN = 1, which is the second condition. As such,
the second condition seems to be a pre-requisite for the first condition but it is not necessarily so.
To see this, suppose the first condition is met, β′cµx = µc, which results in xc = β′cx + ec. xc is
further decomposed into two components:

β′cx ∈ A(x) and ec ∈ A(x)⊥.

That is, the first component belongs to the attainable set of x, i.e., a marketable payoff as defined
in Assumption 1. In contrast, the second component, ec, is orthogonal to x so that it is also orthog-
onal to m∗x|µm ∈M(x). Therefore, ec is an idiosyncratic risk component of xc, which is not priced

by m∗x|µm . Since β′cx is the only marketable payoff, the price functional dictates q(β′cx) = β′clN .
This fundamental price should be one dollar, the market price of xc. If not, it violates the LOP
condition and such a pricing error would be reflected in βc0. In that sense, the first condition seems
to be the pre-requisite for the second condition. In sum, the relation between the two conditions
is not hierarchical. In addition, a simple interpretation would be such that the second condition
measures whether the marketable payoff of the crypto is replicable by the stock basis assets and,
as such, it can be regarded as a measure of comovment. In contrast, the first condition states that
the replicable component, β′cx, is the only priced component. In that sense, it is a measure of price
alignment. Overall we can say that α∗c|µm reflects the two domestication traits, comovement and
price alignment.

In the previous subsection, we suggest that the minimum norm orthogonal extension, ε∗c|µm would
be the central variable which carries information regarding the two traits that domesticated cryptos
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should exhibit. Then, a natural question would be how it is related to α∗c|µm . That is what we
summarize in the following proposition.

Proposition 2: Given µm, α∗c|µm in Proposition 1 is equivalent to the amount of seemingly mis-
priced value of xc when m∗x|µm is employed as an SDF, i.e.,

α∗c|µm = E[m∗x|µm · xc]− 1. (18)

Equation (18) can be rewritten as:

α∗c|µm = −E[ε∗c|µm · ec], (19)

where ε∗c|µm is an orthogonal extension of m∗x|µm which yields the minimum-norm SDF generated
by the augmented set of assets, i.e., m∗xa|µm = m∗x|µm + ε∗c|µm. Specifically, ε∗c|µm ⊥ m∗x|µm and

E(ε∗c|µm) = 0. In addition,

‖ε∗c|µm‖
2 = ‖m∗xa|µm‖

2 − ‖m∗x|µm‖
2

(
=
α∗2c|µm
‖ec‖2

)
= inf

mxa|µm∈M(xa)
‖mxa|µm −m

∗
x|µm‖

2. (20)

ε∗c|µmis, in fact, a monotonically transformed variable of the idiosyncratic component of the cryp-
toasset, ec:

ε∗c|µm =
−α∗c|µm
‖ec‖2

ec. (21)

Equation (21) in Proposition 2 shows that given the mean of the SDF, the minimum-norm orthog-
onal extension, ε∗c|µm is perfectly (either positively or negatively depending on the sign of α∗c|µm)

correlated with the idiosyncratic component, ec. In addition, rewriting Equation (20) yields

‖ε∗c|µm‖ =
|α∗c|µm |
‖ec‖

. (22)

As such, the second norm of ε∗c|µm is isomorphic to the information ratio. Note that ‖ε∗c|µm‖ refers
to the amount of upward shift in the mean-second norm frontier of the SDF given µm in Figure
fig:geometry1. Equation (22) states that ‖ε∗c|µm‖ varies across µm entirely due to a change in α∗c|m,

because ‖ec‖ is fixed and is not a function of µm. Therefore, the amount of upward shift in the
frontier at µq in Figure 1 is driven by the amount of seemingly mispriced value designated by m∗x|µq .
Such a result documented in Proposition 2 coupled with Proposition 1 provides the following im-
portant implication:

Proposition 3: Given a sample, a given cryptoasset’s replicability and price alignment can
be diagnosed by the following two steps:

(i) The cryptoasset is replicable by and aligned in price with the stock basis assets if and only
if adding the cryptoasset to the stock basis assets does not result in the upward shift of the
mean-second norm frontier of the SDF. One can test this by evaluating the two conditions
specified in (16) or alternatively by evaluating whether ‖ε∗c|µm‖ = 0 at ‘any’ arbitrary µm

which is different from the estimate of µm where µm = 1−β′clN
µc−β′cµx

, at which the two frontiers
meet with tangency as shown in Proposition 1.
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(ii) If the mean-second norm frontier moves up, the crypto asset is either not replicable or not
aligned in price with the risk stock basis assets. However, it is still replicable by and is aligned
in price with the augmented set of basis assets (the stock basis assets+the risk free asset) if
the risk-free rate is equal to the shadow or implied risk-free rate, µf = 1/µm.

Proposition 3 summarizes how to evaluate the replicability and the price alignment of a given
cryptoasset in the absence of the risk-free asset (step (i)) and in the presence of the risk-free asset
(step (ii)). In step (i), the risk-free asset is not included as a basis asset and thus the attainable
set spanned by the basis assets is A(x). As such, the given cryptoasset should be replicated by the
stock basis assets only. In contrast, in step (ii), the risk-free asset is included in the set of basis
assets, which expands the attainable set to A(xe) where xe = (1/µfx

′)′ and µf is the risk-free rate.
In this case, the cryptoasset is evaluated on whether its payoff is replicable by the stock basis asset
and the risk-free asset.

In the absence of the risk-free asset, which is analyzed in step (i), one can choose arbitrarily any
value of µm as long as it is not µm. Then examine whether ‖ε∗c|µm‖ is zero or equivalently α∗c|µm is
zero. If so, the payoff of the given cryptoasset is replicable by the stock basis assets and its price is
aligned with them. Geometrically, the mean-second norm frontier does not move up. In the case
that ‖ε∗c|µm‖ is positive, the cryptoasset is not replicable or/and is not aligned in price with the
stock basis assets and geometrically speaking, the frontier does make a shift upward. Simply put,
in order to evaluate whether the entire frontier shifts up, all we need to do is to examine whether
‖ε∗c|µ‖ is zero or positive at one single value of µm other than µm.

Even in the case that one finds the cryptoasset is not replicable by or/and is not aligned in price
with the stock basis assets in step (i), it is not the end of story. In such a case, there is still a
possibility that the cryptoasset is replicable by and is aligned in price with the stock basis assets +
the risk-free asset. That is step (ii) and such a possibility can be examined by checking the equality
of the shadow interest rate µf to the market interest rate µf .

Step (i) in Proposition 3 is interesting on its own. In the existing literature on market integration,
DeSantis (1995) and Bekaert and Urias (1996) propose a test of integration between two capital
markets the intuition behind which is to statistically test the upward shift of the HJ bound when
the second market is added to the first market. As shown by Hansen and Jagannathan (1991), there
is a duality between the HJ bound without nonnegative restriction and thus the mean-standard
deviation frontier of risky assets. DeSantis (1995) and Bekaert and Urias (1996) show that the HJ
bound shifts up if and only if the mean-varinance frontier shifts outward to the left and therefore
such a market integration test is equivalent to the spanning test of Huberman and Kandel (1987).
They evaluate a significant increase in the variance (or the second-norm) of the SDF at two different
(and arbitrarily pre-specified) values of µm in order to investigate an upward shift of the entire HJ
bound.

In contrast, step (i) in Propositon 3 shows that if a single asset rather than multiple assets from the
second market is added to a set of assets belonging to the first market, we do not need to evaluate
an increase in the variance of the SDF at two different values of of µm; an evaluation at a single
value of µm is sufficient as long as the chosen value of µm is different from µm.

Step (i) in Propositon 3 delivers another critical issue to consider: the difference between α∗c|µm
and ‖ε∗c|µm‖. Despite their claim to test the shift-up of the HJ bound, DeSantis (1995) and Bekaert

and Urias (1996) do not test directly the statistical signficance of an upward shift of the bound.
Instead, they test whether the SDFs retrieved from a set of stocks in the first market are able to
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correctly price a set of stocks in the second market. Setting aside the fact that the integration
test utilizes two separate values of µm, such a test is equivalent to testing αc|µm = 0 instead of
‖ε∗c|µm‖ = 0. Theoretically speaking, it is true that a test on αc|µm = 0 is the same as a test on

‖ε∗c|µm‖ = 0. However, in terms of test statistics and entailing statistical inference, they are not

equivalent. In the presence of multiple assets in the second market (i.e., xc is a vector or random
variables), they test the significance of the estimates of αc|µm using the General Method of Moments
so that the weighting matrix of the αc|µm estimates in the test statistic is inversely proportional
to the covariance matrix of the estimation errors of αc|µm . In contrast, the test statistic of the
HJ distance test is the amount of the upward shift of the HJ bound by adopting E(xcx

′
c)
−1 as

the weighting matrix.17 Put simply, the market integration test suggested by DeSantis (1995) and
Bekaert and Urias (1996) is analogous to the Hansen-Singleton test, which is a test on αc|µm = 0,
not the HJ distance test, which is a direct test on ‖ε∗c|µm‖ = 0.

If we ignore the afore-mentioned difference in test statiscs regarding α∗c|µm = 0 and ‖ε∗c|µm =

0‖, these two tests are equivalent, theoretically speaking. However, the purpose of our paper is
not simply to test whether a particular cryptoasset is domesticated or not. In conjunction with
such a ‘yes-no’ question, we are also interested in a non-polar ‘wh’ question, i.e., how much it is
domesticated or how much it is non-domesticated. Measuring such a degree of domestication of a
cryptoasset and comparing it with other cryptoassets in that dimension is another important issue
in our paper. α∗c|µm and ‖ε∗c|µm‖ may not deliver the same answers to those questions. ‖ε∗c|µm‖ =

|α∗c|µm |/‖ec‖ is a sort of normalized α∗c|µm . Because ‖ec‖ differs across the cryptos, |α∗c1|µm | > |α
∗
c1|µm |

between two cryptos, c1 and c2, does not necessarily mean ‖ε∗c1|µm‖ > ‖ε
∗
c2|µm‖. This is the central

issue to explore below.

(2) Economic Identity of α∗c|µm
and ‖ε∗c|µm

‖

Here we revisit Equation (18) and Equation (19) to better understand the economic meaning of
α∗c|µm and ‖ε∗c|µm‖. Equation (18) can be interpreted in two extreme ways. One extreme interpre-

tation is that there does not exist such ε∗c|µm which satisfies Equation (19). This interpretation

is equivalent to assuming that m∗x|µm in (18) is a ‘sufficient statistic’ for the true SDF at least in
pricing xc. Then α∗c|µm can be construed as true mispricing in xc. The other extreme interpretation
is that there exists ε∗c|µm , which can explain the seemingly mispriced portion in the price of xc,

which is α∗c|µm . Equation (19) specifies the required property that such ε∗c|µm should satisfy. That

is, Equation (19) is built upon the other extreme assumption that xc is not mispriced at all! It
claims that the seemingly mispriced portion in the price of xc is nothing but an outcome of the
fact that m∗x|µm is not specified sufficiently enough for pricing xc and therefore one needs to find a

missing piece of puzzle, ε∗c|µm by using a clue, Equation (19).

To see this, let us re-examine Equation (19). Since there could be an infinite random variable which
satisifies (19), here we begin with an arbitrary orthogonal extension, εc|µm . Note that because both
E(εc|µm) and E(ec) are zero, E[εc|µm ·ec] = Cov(εc|µm , ec) = ρ(εc|µm , ec)σεc|µmσec , where ρ(·, ·) refers
to the correlation coefficient between two random variables. Then, Equation (19) can be rewritten
as:

−α∗c|µm
ρ(εc|µm , ec) σec

= σεc|µm . (23)

17See Hansen and Jagannathan (1997) and Jagannathan and Wang (1996).

24



ρ(εc|µm , ec) is unknown, but Equation (23) dictates sign
[
ρ(εc|µm , ec)

]
= −sign

[
α∗c|µm

]
. The valid

domain of |ρ(εc|µm , ec)| is (0, 1].

Given the domain of |ρ(εc|µm , ec)|, the aforementioned two extreme interpretations of α∗c|µm diverge

on the assumed value of ρ(εc|µm , ec) in Equation (23).

(a) ρ(εc|µm , ec) = 0: In this case, the left-hand-side of Equation (23) explodes to infinity with
either sign and Equation (23) does not hold. Or alternatively, there exists a discrepancy
between non-zero α∗c|µm (left-hand-side) and zero (right-hand-side) in Equation (19). This
implies that m∗x|µm is a sufficient statistic for the true but unobservable SDF. We let mτ

denote the true SDF. If mτ = m∗x|µm + ετ where ετ ⊥ m∗x|µm and ετ ⊥ ec. m∗x|µm , though not
a true SDF, is sufficient for pricing xc since it delivers the same price of xc that mτ designates.
Then α∗c|µm reflects the true mispricing in xc.

(b) ρ(εc|µm , ec) = −sign[α∗c|µm ] · 1: Given the domain of ρ(εc|µm , ec),

−α∗c|µm
ρ(εc|µm , ec) σec

= σεc|µm ≥

∣∣α∗c|µm∣∣
σec

= σε∗
c|µm

, (24)

where σε∗
c|µm

is the standard deviation of the the minimum-norm orthogonal extension and

thus Equation (24) is precisely the same to the last equation in Equation (22). Equation (24)
implies that σε∗

c|µm
is computed based on an assumption that

ρ(ε∗c|µm , ec) = −sign[α∗c|µm ] · 1. (25)

Therefore, ε∗c|µm is either positively or negatively perfectly correlated with the idioysncratic
component of xc and thus should be a linear transformation of the idioyncratic component
such that ε∗c|µm = πc · ec with some constant πc, an amplification factor.18 Then, σε∗

c|µm
=

|πc|σec and combining this with (24) yields |πc| = 1
σ2
ec

∣∣α∗c|µm∣∣. Further Equation (25) implies

sign[πc] = −sign[α∗c|µm ] and accordingly ε∗c|µm = − 1
σ2
ec
α∗c|µmec. This is an alternative derivation

of Equation (21) in Proposition 2. In sum, ε∗c|µm is nothing but a reverse engineerly retrieved
orthogonal extension, which can justify the price of xc under the assumption that xc is not
mispriced at all.

As such, there could be two extreme views on α∗c|µ, depending on the underlying assumption on

the value of ρ(εc|µm , ec), either 0 or ±1. What about ‖ε∗cµm‖? Roughly speaking, it is based on an
assumption that the tested asset itself, a cryptoasset in our case, comes with its own pricing factor,
ε∗c|µm and that pricing factor is basically its own idiosyncratic payoff, ec, a residual inexplicable by
the stock basis assets. Unfortunately, we cannot tell a priori and even a posteriori which view is
correct simply because we cannot observe the true SDF. Accodingly we also do not have an answer
to whether α∗c|µm is a true indicator of mispricing or the remainder of the asset price to be explained
by non-stock factors. However, this question is not as critical as it seems in our paper. On the one
hand, if α∗c|µm reflects the mispricing, it means that the cryptoasset is not aligned in price with the
stocks. On the other hand, if α∗c|µm is driven by non-stock factors, it means that the cryptoasset
moves less in tandem with the stocks. As such, a large value of α∗c|µmn means that the cryptoasset
is less likely to be domesticated in either way.

18A constant term is not necessary in πc since E(ε∗c|µm
) = E(ec) = 0.

25



(3) A Unique Feature of the GMN-SDF, m∗x

We have investigated how the mean-second norm frontier of the SDF behaves when an individual
cryptoasset is added to the stock basis assets. In particular, Proposition 3 shows that we can
test the upward shift of the frontier by evaluating α∗c|µm = 0 or equivalently ‖ε∗c|µm‖ = 0 at any

arbitrary µm other than the estimate of µm. Here we choose µ∗m = E(m∗x), i.e., the mean value
of the GMN-SDF, as a natural choice of µm. As a matter of fact, there are two good reasons to
select µ∗m as a choice. That is related to how to interpret αc|µ∗m . From here on, we denote α∗c|µ∗m
by α∗c for brevity. The first interpretation is related to ‖ε∗c|µ∗m‖. As discussed in Proposition 2 and
Propositin 3, it measures a distance between the two frontiers under the restriction that the mean
value of the SDF is kept the same. In contrast, as will be shown below, the second is associated
with ‖ε∗c‖, which refers to the ‘minimum’ distance between the two frontiers in the absence of such
a restriction.

Before elucidating those two interpretations, we first compute the expected value of the expected
value of the GMN-SDF. From (12), we know that µ∗m = E(m∗x) = bx

1+ax
. Or alternatively, because

m∗x = θ′xx = l′NE(xx′)−1x, E(m∗x) = µ′xE(xx′)−1lN .19

We begin with the first interpretation of α∗c . According to Proposition 3, if α∗c = 0, it means that
one of two cases happens; the frontier does not move at all upon an addition of the cryptoasset or
the frontier moves up but µ∗m is coincidently identical to µm. For the latter case, we need to further
check whether the shadow risk-free rate, 1/µ∗m(= 1/µm), is equal to µf , the prevailing market
risk-free rate. In contrast, if α∗c 6= 0, it means that the frontier moves up and we need to check
whether 1/µm = µf only. This two step procedure is somewhat cumbersome particularly when a
statistical inference is involved. A good news is that if we can observe the market risk-free rate,
we do not need to go through this two step procedure. All we need to do is to evaluate α∗c|µm = 0

at µm = 1/µf since it implies that the cryptoasset is replicable by and aligned in price with the
stock basis assets or the augmented set of assets (the stock basis assets+the risk-free asset)). If
α∗
c|µ−1

f

6= 0, the given cryptoasset is not so regardless of whether the set of basis assets includes the

risk-free asset or not.

Unfortunately, this straightforward evaluation method in the presence of the risk-free asset is not
feasible because the risk-free rate is not constant in the data. In a time-series analysis, we count
a sample observation at each point in time, t, as an element of the sample space, Ω, under the
assumption that the relevant stochastic processes are stationary. The problem is that the risk-free
interest rate such as the interest rate of a money market account, is locally risk-free but is time-
varying over the observed sample period. As such, the aforementioned simple evaluation method,
which requires constant µf is not feasible in the data.

As such,we need to come up with an alternative way to implement it in the presence of the time-
varying risk-free rate. To do so, we consider the locally risk-free asset, xf , which is characterized
by its first two moments, E(xf ) = µf and Var(xf ) = σ2

f . In addition, we assume xf ⊥ x without

loss of generality.20 Then, the extended set of basis assets becomes xe = (xf x
′)′. Note that this

19Using the Sherman-Morrison formula,

E(xx′)−1 = Σ−1
x −

Σ−1
x µxµ

′
xΣ−1

x

1 + µ′xΣ−1
x µx

.

we can prove that µ′xE(xx′)−1lN = bx
1+ax

.
20In that sense, the locally risk-free asset is similar to a zero-beta portfolio in a classic mean-variance analysis, but

26



extended set is composed of all risky assets, the stock basis assets plus the locally risk-free asset.
Let m∗

e
denote the GMN-SDF retrieved from this extended set of basis assets and let µ∗me

denote
its expected value.

Proposition 4: In the presence of the locally risk-free asset with the time-varying interest rate,

µ∗me

=
µf + bxσ

2
f

µ2
f + (1 + ax)σ2

f

≈ 1

µf
+ υJ , (26)

where υJ =
bxµf−(1+ax)

µ3
f

σ2
f is the Jensen’s inequality term,. If it is sufficiently small, the seemingly

mispriced value of the cryptoasset becomes

α∗c|µ∗me

≈ (µc − β′cµx)
1

µf
− (1− β′clN ). (27)

Then α∗c|µ∗me

= 0 (or equivalently ‖ε∗c|µ∗me

‖ = 0) implies that one of the following two conditions are
met:

(i) α∗c|µ∗me

= 0 because β′cµx = µc and β′clN = 1 in Equation (27). The mean-second norm

frontier retrieved from the original stock basis assets do not shift up when the cryptoasset is
added. The given crypto is replicable by and aligned in price with them.

(ii) α∗c|µ∗me

= 0 but β′cµx 6= µc and/or β′clN 6= 1 in Equation (27). This implies µm = µf . The

mean-second norm frontier retrieved from the original stock basis assets shifts up when the
cryptoasset is added. However, the mean value of the SDF at which the two frontiers meet with
tangency is equal to the inversed mean value of the risk-free rate and thus the shadow risk-free
rate is the same to the expected value of the risk-free rate. The given crypto is replicable by
and aligned in price with the extended set of basis assets (the original stock basis assets + the
locally risk-free asset)

If α∗c|µ∗me

6= 0 (or equivalently ‖ε∗c|µ∗me

‖ 6= 0), the given cryptoasset is not replicable by or not aligned

in price with not only the stock basis assets but also the extended set of basis assets.

If the time-varying risk-free rate is added to the stock basis assets, the expected value of the
GMN-SDF is not, in general, exactly the same to the inverse mean of the risk-free rate, because
of the Jensen’s inequality. The Jensen’s inequality term goes away and the expected value of the
GMN-SDF is the same to the mean of the risk-free rate if µf = (1+ax)

bx
or σf = 0. Remember that

µ∗m = bx
1+ax

is the mean of the GMN-SDF retrieved from the original stock basis assets. Therefore

µf = (1+ax)
bx

, which is equivalent to µ∗m = 1/µf implies that the mean value of the GMN-SDF

retrieved from the original stock basis assets is the same as that implied by the risk-free rate. In
contrast, if σf is zero, the risk-free rate does not vary over time, which eliminates the entire Jensen’s
inequality term. If either of the two conditions are met, the Jensen’s inequality term becomes trivial
and the expected value of the GMN-SDF retrieved from the extended set of basis assets becomes
1/µf .21

it is a standing-alone individual asset, not a portfolio of risky assets and its time-varyng movement is, in general,
extremely limited in a sample, i.e., σf is in a vicinity of zero.

21In our data, the estimates of µ∗me
and 1/µf are 0.99911 and 0.99913 respectively before the structural break and

0.99995 and 0.99995 after the structural break. As such, the Jensen’s inequality term, υJ is trivial.
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Proposition 4 states that if the Jensen’s inequality term is trivial, evaluating α∗c|µ∗me

= 0 (or equiv-

alently ‖ε∗c|µ∗me

‖ = 0) is ‘sufficient’ for testing the replicability and price alignment of the given

cryptoasset and accordingly its domestication. That is, we do not need to go through the cumber-
some procedures described in Proposition 3. The evaluation method proposed in Proposition 4 is a
sort of short-cut, which utilizes the property that the mean value of GMN-SDF becomes consistent
with the market risk-free rate once we add the locally risk-free asset to the original stock basis
assets. As opposed to evaluating separately whether µf = µf in Proposition 3, we directly plug
µf in Equation (27) so that we can indirectly evaluate µf = µf by simply testing α∗c|µ∗me

= 0. As

a result, by simply checking α∗c|µ∗me

= 0, we are enabled to evaluate all at once whether the given

crypto is replicable by and aligned in price with the basis assets regardless of whether the set of
basis assets includes the risk-free asset or not. Related to it, as mentioned above, in conjunction
with testing whether a certain cryptoasset is domesticated, we are also interested in a non-binary
question, i.e., how much it is domesticated or non-domesticated. Because α∗c|µ∗me

and its corre-

sponding ‖ε∗c|µ∗me

‖ are a unified test statistic, each of them could be a candidate for domestication

measure. In summary, once the locally risk-free asset is incorporated as a component basis asset,
the GMN-SDF reveals a unique feature that its accompanying α∗c|µ∗me

and ‖ε∗c|µ∗me

‖ are a composite

test statistic and also a potential domestication measure.

Now, let us discuss the second interpretation of α∗c . Here we assume that there does not exist the
risk-free asset. Step (i) in Proposition 3, we fist need to check whether µ∗m = µm. If µ∗m 6= µm, we
go on evaluating whether α∗c = 0. What if µ∗m = µm? Then, µ∗m is not an appropriate choice of
µm and we have to select other value of µm, let’s say µp, and evaluate whethe α∗c|µp = 0. Here the

unique feature of µ∗m kicks in. Even in such a case, we do not need to change µm from µ∗m to µp.
From Equation (12), we know µ∗m = E(m∗x) = bx

1+ax
and thus the seemingly mispriced value of xc

is

α∗c = E(m∗x · xc)− 1 = (µc − β′cµx)
bx

1 + ax
− (1− β′clN ). (28)

What is special about α∗c? Given that the risk-free asset is assumed not to exist, we need to
construct the replicating portfolio by using the stock risky assets only. In such a case, the replicating
regression changes from (17) to the following regression without the intercept:

xc = b ′cx+ ωc, (29)

where bc = E(xx′)−1E(xcx) and ω is a residual. Then the following proposition holds.

Proposition 5: The seemingly mispriced value of xc against the GMN-SDF is α∗c in (28) is actually
equal to

α∗c = b ′c1N − 1. (30)

In addition, an increase in the second-norm of the GMN-SDF upon an addition of the cryptoasset
is

inf
mxa∈M(xa)

‖mxa −m∗x‖ = ‖ε∗c‖ = ‖m∗xa‖ − ‖m
∗
x‖ =

∣∣α∗c ∣∣
‖ωc‖

, (31)

where ε∗c is an orthogonal extension of m∗x such that

ε∗c =
1− b ′clN
‖ωc‖2

ω = − α∗c
‖ωc‖2

· ωc. (32)
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Equation (30) in Proposition 5 states that the pricing error of xc against m∗x as a benchmark SDF

is equal to the difference between the price of the replicating portfolio and the price of xc, where
the replicating portfolio is exclusively composed of stock basis assets. Equation (31) shows that
‖ε∗c‖ is the minimum distance between the two mean-second norm frontiers, one retrieved from
the stock basis assets and the other retrieved from the stock basis assets + the cryptoasset. In
addition, the minimum distance is simply the difference between the minimum norms of the two
frontiers and it is a sort of normalized α∗c where the normalization is made by ‖ωc‖ as opposed to
‖ec‖ in Proposition 3. Note that because E(ωc) 6= 0 in general, ε∗c is an orthogonal extension of m∗x
without a constraint that the expected value of the extended SDF should be the same to that of
the original SDF: i.e., E(ε∗c) needs not be zero. In contrast, (21) is an orthogonal extension of m∗x
with such a constraint so that E(ε∗c|µ∗m

) = 0.

Proposition 5 sheds a new light on how to understand the mean-second norm frontier in the follow-
ing sense. Firstly, the replicating regression in Equation (29) does not include the intercept term.
By doing so, the part of xc projected by the stock basis assets, Px(xc) = b ′x, is enforced to be
a priori attainable. From the econometric point of view, it may seem to be misspecified since it
does not require E(ωc) = 0. However, the non-trivial value of E(ωc) would be reflected in a change
in the mean value of the GMN-SDFs from µ∗m to µ∗mxa . Secondly and more importantly, such an
interesting property occurs only when µm is equal to µ∗m, the expected value of the GMN-SDF.
That is, (28) is equal to (30) only when µm = µ∗m. This is a unique feature of the GMN-SDF. We
document this feature in Corollary 3.

Corollary 2: Suppose ‖ε∗c‖ 6= 0. It implies that the mean-second norm frontier shifts up. In
contrast, if ‖ε∗c‖ = 0, it implies either of the following two things happens.

(i) b ′clN − 1 = 0 because µc − β′cµx = 0 and 1− β′clN = 0. In this case, adding the cryptoasset to
the basis assets does not move the mean-second norm frontier at all.

(ii) b ′clN − 1 = 0 because bx
1+ax

= 1−β′clN
µc−β′cµx

. In this case, the mean-second norm frontier shifts
up but it is tangent at µ∗m. However, an increase in the frontier at µm other than µ∗m is
economically meaningless since it is based on the assumption that the risk-free rate exists and
it is 1/µm. It violates the assumption that the risk-free rate does not exists.

Corollary 3 is important in the following sense. Note that the basis assets are composed solely of
risky stocks. Corollary 3 states that in such a case, we do not need to investigate whether the entire
mean-second norm bound of the SDF increases with an addition of the cryptoasset. Instead, all we
need to do is to investigate whether the second-norm increases at one particular point, µm = µ∗m.
‖ε∗c‖ = 0 is not an equivalent of ‖ε∗c|µm‖ = 0 for all µm because of one exceptional case, i.e., when

the two frontiers are tangent at µ∗m. However, ‖ε∗c|µm‖ > 0 at µm other than µ∗m is economically
meaningless simply because such µm is not feasible in the absence of the risk-free asset: Equation
(30) is true only at µ∗m. In sum, if we do not consider the risk-free asset as a part of basis assets,
it is sufficient for exploring ‖ε∗c‖ = 0.

α∗c in Proposition 5 is exactly the same to φ′clN − 1, which we have seen in Section 4.2 when we
discuss the intuition behind economic representation of domestic syndrome. Equation (6) therein is
precisely the same to Equation(54) in the proof of Proposition 5. As such, the detailed explanation
on how to understand α∗c can be found in Section 4.2.

Now let us compare Proposition 4 and Proposition 5. To do so, we replace the symbol x′
e

= (xf x
′)

by x for a succinct expression from here on. As such, x is redefined as an extended set of basis assets
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which includes the locally risk-free asset. In Proposition 4, we center upon the role of the locally
risk-free asset which enables to simplify the complex evaluation procedure described in Proposition
3. In contrast, the locally risk-free asset in Proposition 5 is construed as nothing but another
risky asset added to the original stock basis assets. As such, α∗c has a dual meaning: it could be
interpreted as either Equation (27) in Proposition 4 or Equation (30) in Proposition 5.

α∗c in Equation (27) is associated with ‖εc|µ∗m‖, which is the second norm of the orthogonal extension
of the SDF under the restriction that the extended SDF keeps the same mean, i.e., E(mxa|µ∗m) =
E(m∗x), therebye E(ε∗c|µ∗m

) = 0. In Figure 4, it is illustrated as a vertical distance between the
GMN-SDF retrieved from the basis assets, x, and a particular point on the frontier retrieved from
the set of assets augmented by the cryptoasset, xa, where that particular point is on a vertical
line extended from the GMN-SDF. According to Proposition 4, α∗c = 0 or equivalently ‖εc|µ∗m‖ = 0
implies that the given crypto is replicable by and aligned in price with either the original stock
basis assets or those added by the locally risk-free asset.

In contrast, α∗c in Equation (30) is associated with ‖ε∗c‖, which is also the second norm of the
orthogonal extension of the SDF, but the extended SDF is not enforced to maintain the same mean,
i.e., E(m∗xa) could be different from E(m∗x), thereby E(ε∗c) not necessarily being zero. In Figure
4, it is depicted as a vertical distance between the two GMN-SDFs. The figure also shows that
‖ε∗c‖ ≤ ‖εc|µ∗m‖ because ‖ε∗c‖ is the minimum distance between the two frontiers. α∗c = 0 herein or
equivalently ‖ε∗c‖ = 0 implies that the cryptoasset is replicable by and aligned in price with the
combined risky assets, i.e., the stock basis assets plus the locally risk-free asset.

As such, the two versions of interpretation of α∗c are congruent with each other. Proposition 4
centers upon the unique role of the locally risk-free asset and thus combine the two different cases
of α∗c = 0. In contrast, Proposition 5 simply focuses only on the replicability and price alignment of
the cryptoasset by the risky assets in the absence of the risk-free asset. Despite this subtle difference,
the resulting test statistic is the same, α∗c but their associated second-norms are different depending
on the interpretation of α∗c .

In summary, the GMN-SDF has a unique feature. If the risk-free asset is considered as a part of the
basis assets, we can test whether a given crypto is domesticated simply by evaluating the seemingly
misprice value of the crypto or equivalently its corresponding second-norm of the orthogonal exten-
sion against the GMN-SDF retrieved from the extended set of basis assets (the stock basis assets +
the risk-free asset). If the risk-free asset is not considered as a part of the basis assets, we simply
test

(4) Correlation Between |α∗c| and Idiosyncratic Volatilities

Comovement and price alignment, these two essential traits of domestication may seem to be
independent, but it would not likely be the case. In Propositino 4 and Proposition 5, we have seen
that α∗c partially reflects non-replicability of xc by the stock basis assets or by those augmented
by the locally risk-free asset. In addition, as discussed in Section 4.2., another potential de facto
measure of comovment is the idiosyncratic volatilities, ‖ec‖ in Proposition 4 and ‖ωc‖ in Proposition
5. Given the fact that both |α∗c | and the idiosyncratic volatilities contain the information regarding
comovement, they may be positively correlated.

There is another reason for positive correlation between the two. α∗c also reflects the price misalign-
ment of the crypto with the basis assets. This misalignment melted in α∗c itself is also highly likely
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to be correlated with the idiosyncratic volatilities. To see this, we need to get back to the notion
of market efficiency. In an efficient market, the market price of an asset should be the unbiased
estimate of its fundamental value. The fundamental values are highly correlated among assets in
the same market since they are co-affected by common factors governing the market. As a result,
their prices should demonstrate strong comovement.

Suppose that in such a market, there exists an asset the price of which deviates from its fundamental
value and the scale of deviation is large enough to take advantage of. This means that the price
of this asset is derailed from the pricing rule governing the market and its market price is different
from a similar asset or portfolio. In such a case, statistical arbitrage would be triggered. Unlike the
text-book arbitrage, which relies upon a ‘perfect’ substitution between the two assets or portfolios
and thus is risk-free, statistical arbitrage utilizes a ‘sufficient’ substitution between them and thus
is not risk-free. That is, if a target asset is ‘sufficiently’ replicable by the other asset or portfolio,
their prices should be similar and, if not, statistical arbitrages would seize the opportunity and
simultaneously buy the cheap and sell the expensive in the quest for statistical arbitrage gains.
Therein, the sufficiency measure of replicability is ‖ec‖ or ‖ωc‖, which indicates the amount of
remaning risk after replication and that is the very risk that the statistical arbitrager is exposed to.
Judgment on whether ‖ec‖ or ‖ωc‖ is small enough and thus worthy of implementing the statistical
arbitrage is different for different arbitragers, depending on their risk tolerance, in-house capital,
funding cost and others. However, the intensity of arbitrage should be, if everything else is the
same, disproportional to ‖ec‖ or ‖ωc‖. Similar to the text-book arbitrage, this statistical arbitrage
transaction per se plays a critical role in reducing the mispricing of the target asset and ultimately
enhancing market efficiency. Consequently, the remaining pricing error,

∣∣α∗c ∣∣, is disproportional to
the intensity of arbitrage activity, and, accordingly is porportional to ‖ec‖ or ‖ωc‖. This is the
reason underlying the positive correlation between the price alignment and comovement.

In a mainstream market, this positive association would be relatively weak. The idiosyncratic
risks of assets in this market would be relatively small enough to dampen the statistical arbitrage
transactions, and as a result, most of assets herein are correctly priced and their pricing errors are
more likely to be random. As such, the pricing errors are crowded around zero with a big mass
and only a few assets with exceptionally large idiosyncratic risk are in a blind spot of statistical
arbitrage and thus remain to be significantly mispriced. Then, neither of

∣∣(α∗c ∣∣ or ‖ec‖ (or ‖ωc‖) is
cross-sectionally widely dispersed and their correlation would be relatively weak.

In contrast, this positive association should be much more evident in a yet-to-be-mainstream one
such as the cryptoasset market. The domesticated cryptoassets, which show comovement in price
with the basis assets, i.e., stocks, thereby ‘sufficiently’ replicable by them, would invite statistical
arbitrage and thus their price is more likely to be aligned with the basis assets. In contrast, the
cryptoassets that are yet to be domesticated, are not sufficiently replicable by the basis assets and
not suitable for statistical arbitrage, and as a result, their market prices substantially deviate from
the pricing rule governing the basis market. Therefore, ‖α∗c‖ is dispersed as widely as ‖ec‖ or ‖ωc‖
and their association would be much more evident in this market.

An important message of Equation (19) is expressed in its alternative form, (24). Remember that
(19) is the condition for finding an extension of (m∗x|µd), i.e., (ε|µd), under the premise that xc is
not mispriced. This reverse engineering of (ε∗|µd) is feasible because xc /∈ A(x), i.e., e 6= 0. (24)
can be rewritten as:∣∣(α∗c |µd)∣∣ =

∣∣E[(m∗x|µd) · xc]− 1
∣∣ = σeσ(ε∗|µd) = ‖e‖‖(ε∗|µd)‖.
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Therefore, given
∣∣(α∗c |µd)∣∣, the larger ‖e‖, the smaller ‖(ε∗|µd)‖ becomes! Note that ‖e‖ is exoge-

nously given and ‖(ε∗|µd)‖ is endogenously determined. Roughly speaking, ‖ε∗|µd)‖ is a measure
based on the assumption that the tested asset itself, a crypto-asset in our case, comes with its own
pricing factor, (ε∗|µd), and, more importantly, that pricing factor is its own idiosyncratic payoff, e,
a residual inexplicable by the basis assets. Therefore, an asset, which is more difficult to replicate
is to match the seemingly mispriced amount with a smaller amplification coefficient, φ.22

This positive association between α∗c and ‖ec‖ (or ‖ωc‖), if it exists, means that ‖ε∗c|µ∗m‖ or ‖ε∗c
could be fatally flawed as a measure of domestication. Suppose there are two cryptos with the
same amount of α∗c . Between the two, the crypto-asset with the larger amount of idiosyncratic
payoff, ‖ec‖ or ‖ωc‖ is assigned with smaller ‖ε∗c|µ∗m‖ or ‖ε∗c and thus is determined to be more

domesticated. Of course, this is counterintuitive since the larger value of ‖ec‖ or ‖ωc‖ implies that
cryptoasset is less replicable and thus less comoves with the basis assets.

In sum, regarding the positive relation between |α∗c | and ‖ec‖ (or ‖ωc‖), we can make the following
three conjectures.

(1) Weak comovement could be one of important causes for price misalignment by discouraging
the statistical arbitrage transactions and as a result, may induce a positive correlation between
‖ec‖ (or ‖ωc‖) and |α∗c |.

(2) The distance measures, ‖ε∗c|µ∗m‖ and ‖ε∗c‖, which measures the amount of upward shift in the
mean-second norm frontier of the SDF could be a counterfactual and misleading measure of
domestication.

4.4 Candidate Domestication Measures

Based on the above analysis, we consider a set of alternative candidate domestication measures.
Combining Equation (22)and Equation (31) yields

|α∗c | = ‖ec‖ · ‖ε∗c|µ∗m‖ = ‖ωc‖ · ‖ε∗c‖. (33)

As discussed above, in Equation (33), |α∗c |, ‖ec‖ and ‖ωc‖ are characteristics specific to the cryp-
toasset. Given these characteristics, ‖ε∗c|µ∗m‖ and ‖ε∗c‖ are endogenously determined to satisfy the

equations in (33). In measuring the domestication syndrome of the given crypto, α∗c is a natural
candidate, which carries information regarding comovement and price alignment altogether. We
use α∗c rather than ‖α∗c‖. In the next section, we will nonparametrically construct the distribution
of the domestication measures under the null that a given crypto is domesticated. This nonpara-
metrically estimated null distribution may not be symmetric and therefore it could be important
to keep the information about the sign of α∗c .

The next natural candidates are the distance measures, ‖ε∗c|µ∗m‖ and ‖ε∗c‖. These candidates are
attractive in the sense that they measure the amount of upward shift in the mean-second norm
frontier. However, as discussed above, they are the variants of |α∗c | which are normalized by the
idiosyncratic volatilities, ‖ec‖ and ‖ωc‖. As a result, they may deliver counterintuitive and mis-
leading information regarding domestication if |αc| and these idiosyncratic volatilities are strongly

22This implies that the Hansen-Jagannathan bound, cetris paribus, shifts up less when an asset with a larger
amount of idiosyncrasy is added to the same basis asset.
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correlated. Again rather than use these distance measures as they are, we keep the information
regarding the sign of α∗c . To do so, we slightly modify the distance measures such that

sign[α∗c ] · ‖ε∗c|µ∗m‖ =
α∗c
‖ec‖

& sign[α∗c ] · ‖ε∗c‖ =
α∗c
‖ωc‖

.

Recall that α∗c can be construed as (µc−β′cµx)(1/µf )−(1−β′clN ) or b ′clN −1. Given this seemingly
mispriced value of the crypto’s price, ‖ε∗c|µ∗m‖ and ‖ε∗c‖ are determined to justify the crypto’s market
price. As such, it is true that α∗c determines the two transformed distance measures, not the other
way around. Depsite that, let us change the way of thinking such that sign[α∗c ] · ‖ε∗c|µ∗m‖ and

sign[α∗c ] · ‖ε∗c‖ are the benchmark measures and α∗c itself is a transformed variate of these two
measures:

α∗c = ϑce · sign[α∗c ] · ‖ε∗c|µ∗m‖ = ϑcω · sign[α∗c ] · ‖ε∗c‖,

where ϑce = ‖ec‖ and ϑcω = ‖ωc‖. Then, α∗c can be thought of as a product of an amplification factor
(ϑce or ϑcω) and the sign-keeping distance measure (‖ε∗c|µ∗m‖ and ‖ε∗c‖). These amplification factor
is to alleviate the above-mentioned counterintuitive property of the distance measures that the
cryptoasset which is more exposed to the idiosyncratic risk is assessed as being more domesticated.
We could be more aggressive in dealing with this drawback of the distance measures by increasing
ϑce = ‖ec‖2 and ϑcω = ‖ωc‖2. Then, the resulting candidate domestication measures are

α∗c · ‖ec‖ = ‖ec‖2 · sign[α∗c ] · ‖ε∗c|µm‖ & α∗c · ‖ωc‖ = ‖ωc‖2 · sign[α∗c ] · ‖ε∗c‖.

It is true that these candidates seem to be ad hoc. We consider them to see who sensitive the
domestication measures are in assessing the domestication of a crypto to the positive relation
between |α∗c‖ and the idiosyncratic volatilities.

In summary, we consider the following five candidate domestication measures:

(1) α∗c

(2) α∗c
‖ec‖ and α∗c

‖ωc‖

(3) α∗c · ‖ec‖ and α∗c · ‖ωc‖

Which is a more appropriate domestication measure is an empirical question and we examine it in
the next section.

5 Measurement of Domestication: Empirical Analysis

5.1 Description of the Data

We use bi-weekly returns of relevant variables over the period from January 2017 to March 2022. We
start from January 2017 for three considerations. Firstly, before that date, the number of cryptoas-
sets with reasonable market size and liquidity is too small to empirically assess the domestication
of the cryptoasset market. Secondly, the cryptoasset market experiences a number of sudden and
structural changes driven by a variety of external shocks and events related to its infra-structure
and regulations. With this concern, we avoid going too far back in time in an empirical analysis.
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Thirdly, Auer et al. (2022) documents that the institutionalization of the cryptoasset market gained
noticeable momentum in the beginning of 2020, which is consistent with the empirical results in
Section 3. As such, the post-break time period is relatively short, and we would like to avoid an
excess asymmetry in the time span before and after the break.

The descriptive statistics of data is summarized in Table 4. The data covers the time series of
biweekly returns over the period from the first week of January 2017 to March 23, 2022. We
consider the biweekly returns to obtain a reasonable sample size of time-series data while avoiding
a potential ’weekend effect’ in stock returns. Consequently, the time-series sample sizes are 82 and
52 before the break and after the break respectively.

We use the Fama and French twenty-five book-to-market and size sorted stock portfolios as a set
of stock basis assets, which are downloaded from French’s data library. As is well known, these
portfolios are common stocks of non-financial corporations listed in NYSE, AMEX, and Nasdaq
that are covered by CRSP as well as COMPUSTAT. They are constructed at the end of each
June and are the intersections of five portfolios formed on market capitalization and five portfolios
formed on the ratio of book to market value. Table 4 shows that after the break, their average
returns and corresponding volatilities are slightly higher. We also use the locally risk-free interest
rate, which is available on the same library of French as an additional basis asset. The post-break
period is mostly covered by the zero-interest rate regime in response to the COVID-19 so that its
mean is close to 1, as shown in Table 4.

As will be discussed below, we need returns on individual common stocks to construct a cross-
sectional distribution of test statistics under the null that a cryptoasset is domesticated. We use
all individual stocks listed in NYSE, AMEX, and Nasdaq that are covered by CRSP. The total
number of stocks did not change over the entire period of our empirical analysis thereby remaining
constant at 2,649 firms. Their mean and median returns are slightly higher than those of the stock
basis assets, the Fama-French twenty five portfolios, whereas their volatilities are far greater than
those of the basis assets, which states strong evidence on the idiosyncratic risks.

Following Liu and Tsyvinski (2021) and Liu, Tsyvinski and Wu (2022), we utilize trading data of
all cryptoassets available from CoinMarketCap, which is the most-referenced source for cryptoasset
price and volume data. For each cryptoasset, CoinMarketCap provides a price, which is the volume-
weighted average of all prices reporated in each coin exchange that provides API. Among all the
cryptoassets available from it, we consider the cryptoassets that maintain the market capitalizations
of more than one million dollars over the relevant sample periods (the pre-break period and the
post-break period respectively). As such, our data is composed of the relatively large cryptoassets.
We exclude five cryptoassets the price behaviors of which are exceptionally unreliable.23 The mean
and median return of the individual cryptoassets declined slightly along with their volatilities after
the break.

One interesting thing to notice in Table 4 is that the cross-sectional maximum volatility of the
individual stocks is greater than that of the individual cryptoassets in both of the pre- and post-
break periods. Some individual stocks show even a greater amount of fluctuations in their returns
than the cryptoassets do.

23The five cryptoassets excluded are Mobius, Elamachain, POA network, Pirate Chain and COCOS. Their prices
once shot up more than 1,000 percent within two weeks, which were followed by headlong plunges. Excluding them
does not change our qualitative conclusion.
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5.2 Unbiased Estimators of α∗x, ‖ωc‖ and ‖e‖ and Ratios

Before estimating the alternative candidate domestication measures, we first estimate their com-
ponent variables, α∗x, ‖ec‖ and ‖ωc‖.

Even though consistent estimators are all available in closed-form, we consider small sample esti-
mators under the normality assumption of ec and correspondingly ωc with a concern that the size
of time-series sample, T , is not large relative to the parameters (N or N + 1) to be estimated and,
as a result, the estimators are highly likely to be subject to a large amount of bias. This problem
could be potentially exacerbated by a large amount of residuals, ec and ωc in the cryptoasset payoff.
As such, we assume

ec ∼ N(0, σ2
ec).

Under this normality assumption, we compute the unbiased estimators of relevant parameters.

Proposition 6: α∗c , the estimator of pricing error of xc, which is identical regardless of the
presence of the risk-free asset, it is distributed as following:

α̂∗c = ̂E(m∗x · xc)− 1

= b̂ ′lN − 1 = β̂′clN − 1(β̂′cµ̂x − µ̂c)
b̂x

1 + âx
∼N

[
α∗c ,

σec
T
· ĉx + âxĉx − b̂2x

1 + âx

]
, (34)

where b̂c and β̂c are the ordinary least squares regression coefficients without and with an intercept
respectively:

b̂c = (XX ′)−1(X ′Xc), β̂c = Σ̂−1
x Σ̂xc.

where X and Xc are T ×Nsample matrix and T × 1 sample vector corresponding to x and xc and

Σ̂x =
X ′X

T
− X ′lT

T
·
l′TX

T
, Σ̂xc =

X ′Xc

T
− X ′lT

T
·
l′TXc

T

are the sample estimates of a covariance matrix of x and a covariance vector between x and xc
respectively without adjustment for the degrees-of-freedom. Similarly, âx, b̂x and ĉx are the corre-
sponding sample estimates of ax, bx and cx. N is the number of basis assets including the locally
risk-free asset and thus 26 in our sample.

Below, we provide the unbiased estimators of ‖ec‖ and its corresponding domestication measures,
α∗c
‖ec‖ and α∗c‖ec‖ in Proposition 5-1. In contrast, there do not exist the unbiased estimator of ωc.

Instead in Proposition 5-2, we will compute the pseudo-unbiased estimators of ‖ωc‖ and its corre-

sponding domestication measures, α∗c
‖ωc‖ and α∗c‖ωc. Using an extensive simulation, we demonstrate

that the biases of these pseudo-unbiased estimators are trivial. Any letter with a ‘hat’ denotes an
estimator.

Proposition 7-A: The unbiased estimators of ‖ec‖ and its corresponding candidate domestication

measures, α∗c
‖ec‖ and α∗c‖ec‖ are as following:
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• The unbiased estimator of ‖ec‖ (= σec):

sec =

√
T −N − 1

2

Γ
(
T−N−1

2

)
Γ(T−N2 )

√
σ̂2
ec

where

σ̂2
ec =

∑T
t=1 ê

2
ct

T −N − 1

is an unbiased estimator of σ2
ec and Γ(·) refers to a gamma function.

• The unbiased estimator of α∗c
‖ec‖ :(̂

α∗c
‖ec‖

)
=

α̂∗c√
σ̂2
ec

·
√

2

T −N − 1

Γ
(
T−N−1

2

)
Γ
(
T−N−2

2

) or
=

α̂∗c
sec
·

[
Γ
(
T−N−1

2

)]2
Γ
(
T−N

2

)
Γ
(
T−N−2

2

)
• The unbiased estimator of α∗c‖ec‖:

α̂∗c‖ec‖ = α̂∗csec .

Similarly, we make the following proposition, which is relevant for ‖ωc‖ and its corresponding can-
didate domestication measures.

Proposition 7-B: The pseudo-unbiased estimators of candidate domestication measures and their
components in the absence of the risk-free asset are as following:

• The pseudo-unbiased estimator of ‖ωc‖ =
√
E(ω2

c ):

sωc =

√
T −N

2

Γ
(
T−N

2

)
Γ(T−N+1

2 )

√
σ̂2
ωc

where

σ̂2
ωc =

1

1 + âx
β̂2
c0 +

T − 1

T
σ̂2
ec

is an unbiased estimator of E(ω2
c ). β̂c0 = µ̂c − β̂′cµ̂x, where β̂c = Σ̂−1

x Σ̂xc.

• The pseudo-unbiased estimator of α∗c
‖ωc‖ :

̂( α∗c
‖ωc‖

)
=

α̂∗c√
σ̂2
ωc

·
√

2

T −N
Γ
(
T−N

2

)
Γ
(
T−N−1

2

) or
=
α̂∗c
sωc
·

[
Γ
(
T−N

2

)]2
Γ
(
T−N+1

2

)
Γ
(
T−N−1

2

)
• The pseudo-unbiased estimator of α∗c‖ωc‖:

α̂∗c‖ωc‖ = α̂∗csωc .

Clearly we can see that the unbiased estimators in Proposition 7-A and the corresponding pseudo-
unbiased estimators in Proposition 7-B are isomorphic in their functional form except for the
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degrees of freedom. We examine the simulation analysis to examine the performance of the pseudo-
unbiased estimators in Proposition 7-B. The results are reported in Table A.1, which shows that
the pseudo-unbiased estimators are ‘almost’ unbiased. Given this satisfactory performance of the
pseudo-unbiased estimators, we use these estimators in Proposition 7-B along with the unbiased
estimators in Proposition 7-A in measuring the domestication syndrome for all available crytpo-
asset during the pre and post periods of the structural breakpoint, February 24, 2020, which is
suggested in the state-space analysis in Section 3.

5.3 Estimation Results of Domestication Statistics

(1) The Relationship Between ‖α∗c‖ and Idiosyncratic Risks

Before we compare the estimation results of alternative candidate domestication measures, we
first investigate the relationship between the estimates of the absolute seemingly misrprice value
(|α∗c |) and the idiosyncratic volatilities (‖ec‖ and ‖ωc‖). As discussed in Section 4, the significan
positive correlations would result in a counterintuitive conclusion as regards domestication, when
the adjusted distance measures, α∗c

‖ec‖ and α∗c
‖ωc‖ , are adopted as domestication measures.

The estimation results before and after the structural break on the individual stocks and the
individual cryptoassets are presented in Table 5. Panel (a) summarizes the estimation results with

sec = ‖̂ec‖ as a regressor whereas Panel (b) reports the estimation results with swc = ‖̂ωc‖ as a
regressor. All of the slope coefficients are strongly significant both for the individual stocks and the
cryptoassets: i.e., the assets with higher idiosyncratic risk is more likely to show a larger amount
of seemingly misprice value. In addition, such a tendency is stronger for the cryptoassets, which is
shown in the estimated slope coefficients. For example, Panel (a) shows that as for the cryptoassets,
the slope estimates are 0.1791 and 0.1795 before and after the break respectively, whereas they are
somewhat smaller, 0.0948 and 0.1096 for the individual stocks. Note also that the estimated slope
coefficients are quite similar before and after the break, which demonstrates that such positive
associations are relatively stable over time. The adjusted R2s, the goodness-of-fit statistics, are
quite high ranging from 0.2969 to 0.5669. Panel (b) reports the similar results as well.

In summary, we find strong positive relations between ‖α̂∗c‖ and the idiosyncratic volatilities, sec and
swc . These positive relations imply that the adjusted distance measures may yield a counterfactual
conclusion on the domestication of a cryptoasset.

(2) Two-Step Test of Domestication

Table 6-A and Table 6-B coupled with Table 7-A and Table 7-B summarize the estimation results
of alternative domestication measures for domestication. As discussed in Section 4, we consider
five candidates for domestication measures. In Table 6-A and 6-B, we report the estimation results
of α∗c , α

∗
c/‖ec‖ and α∗c‖ec‖. For these three statistics, we can test their statistical significance by

using the finite-sample distribution derived in Proposition 6 and Proposition 7-A. For example,
under the null of α∗c = 0, the estimate of α∗c/‖e‖ is distributed with the student’s t; the estimate of
α∗c is normally distributed and α∗c‖ec‖ is distributed with a product of a normal distribution and
a χ distribution. Therefore, these classic parametric tests are feasible, but we do not opt for them
herein.
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The reason is twofold. Firstly, these tests are not coherent with the objective of the tests, i.e.,
diagnosing whether a certain cryptoasset is domesticated. Suppose that a certain cryptoasset is
rejected in the tests. Such a result is not a conclusive evidence that the crypto is not domesticated.
Why? Because even individual stocks, which are domesticated assets by definition may fail to pass
these tests. The rejections in these tests are nothing but a statement that the price of a particular
asset cannot be explained by the SDF retrieved from the set of basis assets. The rejections do not
necessarily imply that the tested asset is different from stocks. Secondly, as discussed in Section
4, the seemingly misprice value, α∗cs, are not ree from the misspecification errors since they are
dependent upon the chosen set of basis assets. We adopt the Fama-French twenty five portfolios
augmented by the locally risk-free asset as the basis assets. αs would be different if we choose the
different sets of basis assets.

As such, we need an alternative method of testing the domestication of a cryptoasset, which is
more suitable for the purpose of the test, and, at the same time, is less exposed to the potential
misspecification errors. In this respect, we propose the following novel two-step estimation scheme.

(1) Construction of a Null Distribution by Using Individual Stocks: In the first step,
we estimate the aforementioned three candidate domestication measures for the entire set
of individual stocks covered by the CRSP and construct a cross-sectional distribution of
each estimated domestication measure. Since stocks are the benchmark against which an
individual cryptoasset’s domestimation is measured, this cross-sectional distribution is the
nonparametrically estimated distribution defined under the null of domestication.

(2) Test on Domestication of a Cryptoasset: In the second step, we investigate the statistical
significance of the corresponding estimated measure of a certain individual cryptoasset by
testing whether the estimate is inside the confidence interval of the above cross-sectional
distribution, given the pre-specified confidence level. If it is inside the interval, the cryptoasset
is diagnosed with a ‘domesticated’ asset and if not, it is diagnosed with a ’non-domesticated’
asset.

This test scheme is based on the cross-sectional distribution of the relevant domestication measures
of the entire set of stocks. Since stocks are domesticated by definition, this distribution itself is
the distribution of test statistics under the null hypothesis that an asset is domesticated. Thus
this test scheme is suitable for the purpose of the test. Moreover, any errors inherent in the
estimated statistics of the cryptoassets driven by the misspecified basis assets would equally affect
the estimated statistics of the individual stocks as well. Therefore, the proposed test scheme would
is more robust to the misspecification problem.

In Table 6-A, we report the estimation results before the break. The upper part of the table tab-
ulates the estimated results of the first step, i.e., the individual stocks’ cross-sectional distribution

of test statics, along with the idiosyncratic risk, sec

(
= ‖̂ec‖

)
. The mean value of the idiosyncratic

risk, secs, is 7.82%, which is slightly higher than its median, 5.67%, which implies the right-skewness
of its cross-sectional distribution. We compute the values of swc corresponding to the 95% con-
fidence level (5% p-value), 97.5% confidence level (10% p-value) and 99% confidence level (1%
p-value). sec itself is not an estimate of the domestication measure. As discussed in Section 4, it is
an indirect measure of comovment of an asset with the set of basis assets, Fama-French twenty-five
stock portfolios coupled with the locally risk-free asset. The left-end of the confidence interval is
not considered since the smaller value of swc means extremely strong comovment in price between
the asset and the basis assets.
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Let us move on to the three candidate domestication measures. The mean value of α̂∗c
‖ec‖ is 0.0220,

which states that the test stastic is positively baised, albeit slightly. This highlights the strength of
our two-step estimation procedure since the ultimate test on the domestication of the cryptoasset
in the second step takes into account this bias. This positive bias yields an asymmetry in the
confidence interval. For example, the lower end of 95% confidence interval is -0.2343 wheras the
corresponding upper end is 0.2544. Subracting the bias from these two ends results in the lower
end value of -0.2562 (=-0.2343-0.0220) and the upper end value of 0.2324 (=0.2544-0.0220). The

left-skewness of α̂∗c
‖e‖ is consistent with the above-mentioned right-skewness of the estimate of sec .

This asymmetry of the cross-sectional distribution rationalizes adopting the raw value of α∗c as
opposed to its absolute value in our test statistics.

Next, let us consider α̂∗c . Since its sign equals that of α̂∗c
‖ec‖ , α̂

∗
c is also slightly positively biased. The

shape of its distribution is also asymmetric and overall left-skewed. The distribution of the last

measure, α̂∗c‖ec‖, is also slightly positively biased and skewed to the left.

The lower part of Table 6-A reports the estimation results of the second step. Firstly, most of the
cryptoassets show far higher idiosyncratic risks, secs. Not only its mean is 0.4428, which is 5.7 times
greater than the mean of the individual stocks, but also only one single cryptoassets’s idiosyncratic
risk is inside 95% interval. This result alludes to the fact that the cryptoassets, as a whole, show
no sign of comovement in price with the stocks before the structural break. Such excess values of
the idiosyncratic risks results in a preposterous inference on domestication when the sign-including

distance measure,
(̂
α∗c
‖ec‖

)
is adopted as a measure of domestication. Forty one cryptoassets out of

fourty three are inside the 95% confidence interval, i.e., 95.43% of the cryptoassets are evaluated as
domesticated assets. When the confidence level is enlarged to 97.5%, all of them are concluded to
be ’domesticated.’ Such a misleading conclusion delivered by this measure is driven mostly by the
excess idiosyncratic risks and also by the positive relation between the estimates of α̂∗c and those

of sec

(
= ‖̂ec‖

)
documented in Table 5.

When α̂∗c is adopted as a domestication measure, the test results are more in line with what is
expected. Only three and nine cryptoassets pass the test of domestication when the confidence level
is 95% and 97.5% respectively. Recall that this domestication measure can be thought of as ‖ec‖ ·
α∗c
‖ec‖ , i.e., a variant of the sign-including distance measure which penalizes ‖ec‖. Last, accordingly

to α̂∗c‖e‖, which more heavily penalizes the idiosyncratic risk, only one and four cryptoassets are
concluded to be domesticated at 95% and 97.5% confidence level. This result reflects the extremely
weak comovment in price reflected in the distribution of ‖ec‖.

The post-break estimation results are reported in Table 6-B. The distributions of all the statistics of
the individual stocks therein are more or less similar to the pre-break counterparts. There are two
things to notice though. Firstly, the mean and median values of the sec are slightly higher. Seoncdly
and more importantly, α̂∗c are more positively biased. its mean is 0.20%, which is equivalent to 5%
per annum, and, as a result, the corresponding confidence intervals are more skewed to the right.
This result indicates that the Fama-French stock portfolios coupled with the locally risk-free asset
do not well price the individual stocks during this period, and it demonstrates the importance of
taking into accout such a bias in evaluating the domestication of the cryptoassets.

Unlike the individual stocks, the average idiosyncratic risk of the cryptoassets has declined during
this period. Its mean value is 0.3510, which is far smaller than its pre-break counterpart, 0.4428.
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About 18.31% of the cryptoassets show idiosyncratic risk which are below the critical value of 95%
confidence level designated by the stocks, which is 0.2164. This percentage increases to 46.02%
when the confidence level is enlarged to 97.5%. As such, there is a sizable amount of increase in
the percentage of the cryptoassets which comove in price with the stocks. The first domestication

measure,
(̂
α∗c
‖ec‖

)
, show a counterintuitive result such that the less percentage of the cryptoassets

are domesticated after the break. It concludes that 83.86% and 90.60% of the cryptoassets are
domesticated when the confidence levels are 95% and 97.5% respectively. These ratios are smaller
than their pre-break counterparts, 95.43% and 100%. This counterintuitive results are, of course,
not consistent with the empirical results on the structural break on comovement in Section 3.

Next, the second measure, α∗c , shows that its mean has slightly declined from 0.0709 to 0.0686 after
the break. Considering that the α̂∗c of the individual stocks increased after the break, this downturn
of α∗c of the cryptoassets is in stark contrast. Thus, after the break, the cryptoassets show not only
stronger comovment in price with the stock portfolios but also improved price alignment with
them! The cryptoassets’ upgraded price alignment results in the fact that the ratio of domesticated
cryptoassets has soared after the break according to this measure. Specifically, 36.39% annd 50.84%
of the cryptoassets are now determined as being domesticated at 95% and 97.5% confidence level
respectively, which are far higher than their corresponding figures berfore the break, 6.97% and

20.93%. The last and presumably more conservative measure, α̂∗c‖ec‖ also show a similar behavior.
28.43% and 48.91% of the cryptoassets are determined to be domesticated at confidence level of
95% and 97.5% respectively after the break, and these ratios are in sharp contrast with 2.32% and
9.30% before the break. Summing up, we surmise that among the three candidate domestication
measures, α∗c and α∗c‖ec‖ are more reasonable candidate measures given the fact that their diagnosis
on domestication is more aligned with the empirical results of the state-space model explored in
Section 3.

Table 7-A and Table 7-B report the estimation results when the idiosyncratic risk is measured by
‖ωc‖ instead of ‖ec‖.24 Not surprisingly, the average and median value of ˆ‖ωc‖, the second-norm

on the residual on the regression without the intercept are slightly greater than those of ˆ‖ec‖, the
zero mean second-norm on the residual on the regression with the intercept. However, the overall
results on determining the domestication of the cryptoassets are qualitatively very similar to those
in Table 6-A and 6-B: α∗c and α∗c‖ωc‖ seem to desingate domestication in a more sensible way.

(3) The Determination of Domestication Measures: Correlation Analysis

Herein we investigate which domestication measure is admissible. In Table 6-B and 7-B, we de-
composed the whole set of cryptoassets into the set of domesticated cryptoassets and the set of
non-domesticated assets designated by each measure over the post-break period.25 Based on those
results, we compute ρ(m∗x,mdc) (the correlation coefficient between the GMN-SDF retrieved from
the basis assets and the SDF retrieved from the domesticated cryptoassets) and compare it with
ρ(m∗x,mnc) (the correlation coefficient between the GMN-SDF retrieved from the basis assets and the
SDF retrieved from the non-domesticated cryptoassets). If the domestication measure is sensible,
the SDF retrieved from the domesticated cryptoassets should be highly and positively correlated

24Any and every results associated with α̂∗c in those tables are identical to what are reported in Table 6-A and

Table 6-B. We re-report those results for an ease in comparing α̂∗c with
(̂

α∗c
‖ωc‖

)
and α̂∗c‖ωc‖.

25The number of domesticated assets during the pre-break period is too small to retrieve the SDF. For example,
α̂∗c designate only 3 cryptos as domesticated assets when 95% confidence interval is adopted.
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with the GMN-SDF retrieved from the basis assets whereas the correlation between the SDF retrieved
from the non-domesticated cryptoassets and GMN-SDF retrieved from the basis assets should be
close to zero.

To examine the correlations, there are two issues to resolve. Firstly, we have to decide which SDF of
the cryptoassets we have to employ between m∗dc and m∗dc|µ∗m

for the domesticated cryptoassets (m∗nc
and m∗nc|µ∗m

for non-domesticated cryptoassets). m∗dc (m∗nc) refers to the GMN-SDF retrieved from

the domesticated (non-domesticated) cryptoassets. As such, its mean is not necessarily the same to
the mean of the GMN-SDF of the basis assets: i.e., E(m∗dc) 6= E(m∗x)(= µ∗m) (and similarly E(m∗nc) 6=
E(m∗x)(= µ∗m)). In contrast, m∗dc|µ∗m

(m∗nc|µ∗m
) is the minimum-norm SDF of the domesticated (non-

domesticated) cryptoassets where its mean is identical to the mean of the GMN-SDF of the basis
assets. Given each domestication measure, we pair each of these two SDFs of the cryptoassets with
the GMN-SDF of the basis assets.

There are 5 different domestication measures: α∗c ,
α∗c
‖ec‖ , α

∗
c‖ec‖,

α∗c
‖ωc‖ and α∗c‖ωc‖. Among them, as

shown in Proposition 5, α∗c
‖ωc‖ and α∗c‖ωc‖ are all based on ‖ωc‖ as the idiosyncratic risk. ‖ωc‖ is

a relevant measur of the idiosyncratic risk when we measure the distance between the GMN-SDF

of the basis assets and the GMN-SDF of the basis assets augmented by the particular cryptoasset.
Accordingly, these two domestication measures, α∗c

‖ωc‖ and α∗c‖ωc‖, are not built upon a restriction

that the two SDFs share the same mean. To be consistent, we pair m∗dc (m∗nc), the GMN-SDF

of the domesticated (non-domesticated ) cryptoassets designated by these measures with m∗x, the

GMN-SDF of the basis assets. In contrast, α∗c
‖ec‖ and α∗c‖ec‖, which are based on ‖ec‖, are built upon

the restriction that the mean of the SDF of the basis assets augmented by the cryptoasset is the
same as that of the GMN-SDF of the original basis assets. Therefore, as for these two candidate
measures, we pair m∗dc|µ∗m

and m∗nc|µ∗m
with m∗x. As for α∗c , we consider both m∗dc and m∗dc|µ∗m

(and

m∗nc and m∗nc|µ∗m
) because α∗c can be construed as a variant of either of α∗c

‖ωc‖ or α∗c
‖e‖ corresponding to

ϑ = ‖ωc‖ and ‖e‖ respectively as shown in Section 4. All told, we estimate 6 different correlations
for each of the domesticated cryptoassets and the non-domesticated measures.

The second issue is how to construct the basis portfolios of the domesticated cryptoassets and the
non-domesticated cryptoassets. In estimating m∗dc and m∗dc|µ∗m

(and m∗nc and m∗nc|µ∗m
), we are not

able to use the entire universe of the individual cryptoassets because of difficulty in computing
the inverse matrix of their second moments. As shown in Table 6-B and 7-B, the number of the
cryptoassets is quite large, ranging from 118 to 395 (63 to 294) for the domesticated cryptoassets
(non-domesticated cryptoassets) depending on the domestication measure. As such, we need to
construct a set of basis cryptoassets, which is supposed to best represent the whole universe of the
cryptoassets. To do this, we use two alternative methods. Firstly, we employ the method of forming
basis assets suggested by Ahn, Jennifer and Dittmar (2009). Secondly, we use a bootstrappking
analysis. Below we discuss each method and estimation result.

Cluster Analysis

This method uses return correlations to sort individual assets into portfolios based on a cluster
analysis. It generates a set of basis assets in which cryptoassets should be highly correlated within
groups, but have minimal correlation across. The number of clusters is equivalent to the number
of basis assets, and we consider the number of clusters to from 10 to 15.
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Table 8 summarizes the estimated correlation coefficients for the domesticated cryptos and the
non-domesticated cryptos designated by the alternative domestication measures. Let us begin with
α̂∗c . Table 6-B shows that given the 95% confidence interval, for example, α̂∗c designate 151 cryptos
as domesticated assets and the remaining 264 cryptos as non-domesticated assets. We identify 10
clusters out of the 151 domesticated cryptos using the cluster analysis and construct the crypto
portfolio corresponding to each cluster, which results in 10 domesticated crypto basis assets. As
discussed above, when α∗c is used as a domestication measure, two SDFs, m∗dc|µ∗n

and m∗dc, can be
considered so that we estimate those two SDFs from the 10 domesticated crypto basis assets. Finally,
we compute the correlation coefficients, ρ(m∗x,m

∗
dc|µ∗n

) and ρ(m∗x,m
∗
dc). We go through the same

procedure with the 264 non-domesticated cryptos to compute the ρ(m∗x,m
∗
nc|µ∗n

) and ρ(m∗x,m
∗
nc).

We do this analysis for a different number of clusters and also for a different confidence level.

Consider the estimation results when the number of clusters is 10. At 95% confidence level,
ρ(m∗x,m

∗
dc|µ∗m

) is strongly positive, 0.5433. In contrast, ρ(m∗x,m
∗
nc|µ∗m

) is quite close to zero, -0.0101.
This noticeable difference in correlations between the domesticated cryptos and non-domesticated
ones is strong evidence that α̂∗c is very successful in distinguishing between domesticated cryptos
and non-domesticated cryptos, thereby being a strong measure of domestication.

In contrast, when m∗dc and m∗nc are employed as the SDF of cryptoassets, the distinction becomes
slightly less evident: 0.4783 vs. 0.0215. In fact, the pair of m∗dc|µ∗m

and m∗nc|µ∗m
overall shows a

stronger performance than the pair of m∗dc and m∗nc: the correlation of m∗dc|µ∗m
with m∗x is stronger

than the correlation of m∗dc with m∗x except when the confidence level is 99%. In addition, all of the
correlations between m∗nc|µ∗m

and m∗x are trivial and slightly negative whereas the correlations of
m∗nc with m∗x are sometimes quite sizable with positive signs, for example, 0.1883 when the number
of clusters is 15 and the confidence level is 99%.

There is another good reason why the pair of m∗dc|µ∗m
and m∗nc|µ∗m

is more reasonable. Note that

the 95% confidence level is the most conservative criterion in determining the domestication of an
individual cryptoasset. Consequently, the SDF of the domesticated cryptoassets based on the 95%
confidence level should be most highly correlated with the SDF of stock basis assets, if everything
else is the same.26 The 97.5% confidence level is less conservative in selecting the domesticed cryptos
so that the SDF retrieved from the domesticated cryptos based on it is more likely to show the less
strong correlation. The 99% confidence level, the least conservative criterion, is more exposed to
an error of classifying the non-domesticated assets as domesticated ones and thus its correlation is
more likely to be the weakest. In Table 8, the correlations between m∗nc and m∗x fails to meet this
monotonicity condition when the number of basis cryptoassets is small, from 10 to 13. In contrast,
m∗dc|µ∗m

satisfies the monotonicity condition across all clusters. In summary, α̂∗c demonstrates a very
strong performs in distinguishing between the domesticated cryptoassets and the non-domesticated
cryptoassets, and the pair of m∗dc|µ∗m

and m∗nc|µ∗m
m∗c |µm seems to be superior to the pair of m∗dc and

m∗nc as admissible SDFs of the cryptos.(̂
α∗c
‖ec‖

)
and

(̂
α∗c
‖ωc‖

)
, which correspond to the orthogonal extesnsion of the SDF, ‖ε∗c||µ∗m‖ and ‖ε∗c‖

respectively, show a few weaknesses as a measure of domestication, as expected from the estimation
results in Table 6s and Table 7s. Both measures deliver the relatively weak correlations between
the SDF of the domesticated cryptos and the SDF of the stock basis assets, ranging from 0.0044 to

0.2545. In particular,
(̂

α∗c
‖ωc‖

)
yields a counterintuitive behavior of correlations when the number

26The more conservative confidence level results in the smaller number of domesticated assets. This may lead to
less accuracy in identifying distinct clusters, which may result in weak correlations.

42



of clusters is small. For example, when the number of clusters is 10 with 99% confidence level, the
correlation between the SDF of the domesticated cryptos and the SDF of stock basis assets is 0.0654,
which is even lower than 0.1787, the correlation between the SDF of the non-domesticated cryptos
and the SDF of the stock basis assets; the SDF of the non-domesticated cryptoassets are more
strongly correlated with the SDF of the domesticated cryptos, which is counterintuitive. As for(̂
α∗c
‖ec‖

)
, such a counterintuitive behavior of correlations is not observed. However, the correlations

between the SDF of the non-domesticated cryptos and the SDF of the stock basis assets are all
negative and, sometimes, with a large magnitude. For example, when the number of clusters is 15
and the confidence level is 95%, the correlation is as low as -0.4043. Note that the non-domesticated
cryptoassets are defined as not co-moving whatsoever with the stock basis assets and accordingly
not being subject to the pricing rule governing the stock basis assets. Consequently, the SDF of
the non-domesticated cryptoassets should be neither positively nor negatively correlated with the
SDF of the stock basis assets. This counter-intuitive behavior of correlations between SDFs are
consistent with the results in Table 6s and Table 7s, which show that these domestication measures
‘over-designate’ the cryptoassets as domested assets.

Finally, α̂∗c‖ec‖ and α̂∗c‖ωc‖ show the correlation behaviors similar to α̂∗c , but is less capable of dis-
tinguishing between the domesticated cryptos and the non-domesticated ones. For example, when
the number of clusters is 10 with the 95% confidence level, the correlation of the cryptos designated

as domesticated by α̂∗c‖ωc‖ is 0.3841, which is lower than 0.4783, the corresponding correlation

when α̂∗c is adopted as a domestication measure. Similarly, the correlation of α̂∗c‖ec‖ is 0.4599,
which is also lower than the corresponding figure, 0.5433 when α̂∗c is adopted as a domestication
measure. Overall, the above results indicate that α∗c is a most successful candidate in distinguishing
the domesticated cryptos from the non-domesticated ones.

Bootstrapping Analysis

As an alternative to the cluster analysis, herein we consider bootstrapping in constructing the
crypto basis assets. We do this by the following procedures:

(a) We fix the number of crypto basis assets to 25 for each of domesticated cryptos and non-
domesticated cryptos. Because each crypto basis asset is a portfolio (i.e., bin in random
sampling) composed of individual cryptos, we compute how many of individual cryptos defined
to be domesticated (non-domesticated) by a particular domestication measure should be
allocated into each portfolio (bin). If the total universe of domesticated (non-domesticated)
cryptos are divisible by 25, we end up with equal number of individual cryptos in each crypto
basis asset (bin). If not, we compute the quotient and allocate its round-up number of
individual cryptos in some basis assets (bins) and its round-down number in the remaining
basis assets (bins).

(b) Using the uniform distribution, for a particular crypto basis portfolio (i.e., bin), j, we conduct
radom sampling out of the domesticated (non-domesticated) cryptoassets, the number of
which is identical to the number pre-specified in step (a). We do this random sampling for
each of 25 basis assets, j = 1, 2, · · · , 25. Unlike generic bootstrapping, we conduct the random
sampling without replacement to avoid the inclusion of certain individual assets in multiple
basis portfolios (bins). Consequently, the resulting 25 crypto basis portfolios are composed
of individual cryptoassets which do not overlap across different portfolios.
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(c) We costruct the equally weighted portfolio with the individiaul cryptos sampled in (b) for
each basis portfolio and compute the relevant SDF out of the 25 randomly constructed basis
assets in (c), m∗dc (m∗nc) or m∗dc|µ∗m

(m∗nc|µ∗m
), depending on the domestication measure. Then

we estimate and save the correlation between this crypto-SDF and the SDF of the stock basis
assets, i.e., the Fama-French 25 portfolios coupled with the locally risk-free rate.

(d) We iterate the procedures from (a) to (c) for 100,000 times.

As such, we end up with the bootstrapped distribution of correlations between the relevant SDF of
the cryptoassets and that of the stocks. Practically speaking, this distribution spans the entire set
of correlations that are feasible, when one constructs 25 crypto portfolios. A nice feature of this
method is to enable us to test the statistical significance of the correlation since we can compute
the p-value of zero correlation relative to the bootstrapped distribution.

Table 9 reports the estimation results. Again there are 6 different correlation distributions each of
which corresponds to 5 different domestication measures employed to distinguish between domesti-
cated cryptoassets and non-domesticated ones. Also as in 8., two separate correlation distributions
are reported for α∗c , one for the pair of m∗dc|µ∗m

and m∗nc|µ∗m
and the other for the pair of m∗dc and

m∗nc. Let us take the case where the domestication measure is α̂∗c and the pair of the relevant SDFs
is m∗dc|µ∗m

and m∗nc|µ∗m
. This is found to best perform in the cluster analysis reported in Table 8.

When the confidence level is 95%, the mean correlation of the bootstrapped distribution is 0.440.
Its minimum is as -0.108, whereas its maximum is 0.778. Note that in 6-B, the number of domes-
ticated cryptoassets according to this criterion is 151. Out of 100,000 different ways to construct
25 portfolios out of the 151 cryptoassets classified as domesticated by this criterion, the minimum
value of the correlation is -0.108 while its maximum value is as large as 0.778!. The p-value of zero
is 0.000, which indicates that the correlation is significantly different from zero. In contrast, the
corresponding correlations of the non-domesticated cryptoassets are distributed with mean value of
0.042, which is very close to zero. Its minimum and maximum values are -0.422 and 0.483 respec-
tively, which are quite symmetric in absolute terms. The corresponding p-value of zero correlation
is 0.347, which is statistically insignificant. In sum, the SDF of the domesticated cryptoassets is
significantly correlated with that of the stock basis assets whereas the SDF of the non-domesticated
cryptoassets is not. This result holds when we adopt the less conservative definitions of domesti-
cation, i.e., when 97.5% and 95.0% confidence levels are employed. The corresponding p-values of
zero for the domesticated cryptos are 0.002 and 0.011 so that the correlation is different from zero
at 99% and 99.5% confidence level respectively. In addition, the mononicity of the correlation with
the confidence level holds here as well. With 97.5% confidence level, the mean value of correlation,
0.348, which is lower than 0.440 when the confidence level is 95.0%, but it is higher than 0.268 when
the confidence level is 99.0%. All of the SDFs of the non-domesticated cryptoassets are statistically
insignificantly correlated with the SDF of the stock basis assets: the p-values are 0.359 and 0.555
for 97.5% confidence level and for 99% confidence level respectively. All in all, we can conclude
that α̂∗c is an admissible domestication measure that can distinguish between the domesticated
cryptoassets and the non-domesticated cryptoassets. This result is consistent with the estimation
results delivered by the cluster analysis documented in Table 8.

The implication of the other domestication measures are quite similar to what we observed in Table
8. The estimates of α∗c‖ec‖ and α∗c‖ωc‖ show a solid performance in differentiating the domesticated
cryptos form thenon-domesticated cryptos but not as good as α̂∗c . In addition, the performance

of the estimates of α∗c
‖ec‖ and α∗c

‖ωc‖ are not satisfactory at all. All the p-values of zero correlation

is greater than 5% for the domesticated cryptos. The poor performance of these domestication
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measures are consistent with the results in Table 8.

(4) Nonparametric SDFs and Stock/Crypto Factors

Here we investigate the relations between the SDFs of the cryptos and the stock market factors
along with the crypto-market factors that are proposed in the existing asset pricing literature. As
for the stock market factors, we consider two alternative sets of factors: the Fama-French five factors
proposed in Fama and French (2015) and the q5 factors of Hou et al. (2021). The Fama-French five
factors are composed of market factor (MRMF), size factor (SML), book-to-market factor (HML),
profitability factor (RMW) and investment factor (CMA). In contrast, the q5 factors are market
factor (R M), size factor (R ME), investment factor (R IA), profitability factor (R ROE), and
expected growth factor (R EG). The name of some factors are common between the two models,
but the exact procedures of constructing those factors are different.

As for the crypto-market factors, Liu, Tsyvinski and Wu (2022) document that three factors,
cryptoasset market factor (CMKT), size factor (CSMB) and momentum factor (CMOM) are able
to capture the cross-sectional dispersion in expected returns on the cryptoassets. Following their
study, we replicate those three crypto-market common factors with our sample data.

In the previous subsection, we find that α∗c is the best performing measure of domestication. In
addition, the pair of m∗dc|µ∗m

and m∗nc|µ∗m
are the better SDFs than the pair of m∗dc and m∗nc. Thus,

we report the regression results on this pair of SDFs.27

We consider the following regressions:

(m∗dc|µ∗m)t = ϑd + ϑ′s,dfst + ϑ′c,dfct + εdt

(m∗nc|µ∗m)t = ϑn + ϑ′s,nfst + ϑ′c,nfct + νnt.

where Recall that (m∗dc|µ∗m
)t is the SDF of the cryptoassets designated as domesticated by α̂∗c and

(m∗nc|µ∗m
)t is the SDF of the cryptoassets designated as non-domesticated by α̂∗c . Both SDFs are

retrieved from the 10 crypto basis assets that are constructed by the cluster analysis in Table 8.
The mean values of both SDFs are equal to m∗x, the GMN-SDF of the stock basis assets, i.e., the
Fama-French 25 portfolios augmented by the locally risk-free asset. The regressors, i.e., the stock
market and crypto-market factors are

fst =

{
MRMF, SML, HML, RMW, CMA for the Fama-French model
R MKT, R ME, R IA, R ROE, R EG for the q5factor model

fct = CMKT, CSMB, CMOM.

Table 10s and Table 11s document the estimation results. In Table 10-A, we present the regression
results for domesticated cryptoassets for different confidence levels adopted in defining domesti-
cation, where the Fama-French factors are employed as the stock market factors. When the 95%
confidence level is adopted, none of the coefficients associated with the three crypto-specific factors
are statistically significant either when they are stand-alone factors or when they are comingled
with the stock-specific factors. In contrast, two stock factors, the stock market portfolio (MRMF)
and the profitability factor (CMA) are statistically significant with the p-values of less than 1% and

27The regression results on m∗dc and m∗nc, the GMN-SDF of the cryptos are qualtitatively similar and they are
available upon request.
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2.5% respectively. The adjusted R2 is negative in Regression (1), which uses the crypto-market fac-
tors as the regressors, whereas Regression (2), which use the stock market factors as the regressors
shows the higher adjusted R2 than Regression (3), which are based on both sets of factors. This
result is remarkable. Unlike stocks and other securities, the cryptoassets are devoid of future cash
flow and thus, fundamentally speaking, their prices do not have any reason to be affected by the
stock-specific factors. Consequently, the only plausible explanation of these empirical results is the
non-fundamentaly driven correlations. In particular, our results deliver strong evidence supporting
the category view proposed in Barberis and Shleifer (2003), which aruges that the cryptoassets
comove with the stocks in price just because a large community of institutional investors began to
incorporate some of cryptoassets at par with stocks in their portfolios.

As the domestication criterion becomes more lenient, the aforementioned implication becomes
weaker because less domesticated cryptoassets are classified as domesticated. For example, when
97.5% confidence level is adopted, the crypt size factor (CSMB) and the crypto momentum factor
earn the marginally significant explanatory power in Regression (6), which uses both of the stock
market factors and the crypto-market factors as independent variables. Consequently, the adjusted
R2 of Regression (6) is greater than that of Regression (5), which relies upon the stock market factors
as regressors. However, up to this level of confidence level, the stock market factors dominate the
the crypto market factors by a large margin in explaining the domesticated cryptos, which can be
seen in their adjusted R2. Such a tendency becomes more noticeable as the most loose criterion
of domestication, i.e., 99% confidence level, is adopted; the statistical significance of the crypto
size factor (CSMB) and the crypto momentum factor (CMOM) becomes stronger. At this level of
confidence level, the crypto-market factors become more powerful than the stock market factors in
explaining the domesticated cryptoassets, albeit by a small margin.

Table 10-B documents the regression results for non-domesticated cryptoassets. When the confi-
dence level is 95%, the crypto size factor is the only significant factor in Regression (3). In terms
of adjusted R2, Regression (1) dominates Regression (3), not to mention Regression (2), the R2

of which is negative. At 97.5% confidence level, all the three crypto-market factors become signif-
icant. This result makes sense. As the domestication criterion becomes more lenient, the set of
non-domesticated cryptos shrinks and the less strongly non-domesticated cryptos are likely to be
excluded. As a result, the degree of non-domestciation becomes stronger as the domestication crite-
rion becomes weaker. Such intuition appears to break down when we move to 99% confidence level,
which show that besides the crypto-market factors, the three stock market factors, SMB, HML,
and RMW, regain statistical significancy. However, the most likely cause of such counterintuitive
results is multicoliniarity between the set of crypto-market factors and the stock market factors.
In Regression (8), RMW is the only significant stock market factor and its adjusted R2 is as small
as 5.97%. Adding the stock market factors to the crypto market factors increases adjusted R2 only
by 0.77%, from 49.04% to 49.81%. When comparing the adjusted R2 of the regression equation
based on the stand-alone crypto market factors, Regression (1), Regression (2) and Regression (3),
the adjusted R2 monotonically increases from 12.14% to 38.99% and 49.04% as the less lenient
domestication criterion (and thus the more strong non-domestication criterion) is adopted.

Table 11-A and Table 11-B report the estimation results equivalent to Table 10-A and Table
10-B. Here the regression employes the q5 factors as representive stock market factors in lieu
of the Fama-French factors. Overall, the results are quite similar to those with the Fama-French
factors. Specifically, in Table 11-A, two stock market factors, the market factor (R MKT) and the
investment factor (R IA) are statistically significant in explaining the domesticated cryptos. This
result is remarkably consistent with that in Table 10-A, which documents the statistical significance
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of the market factor (MRMF) and the investment factor (CMA). The exact way of constructing
those factors are slightly different but R MKT and R IA are qualitatively isomorphic to MRMF and
CMA respectively. In addition, at 95% confidence level, no single crypto-market factor survived in
statistical significance and as the domestication criterion weakens, CSMB begins to earn statistical
significance in Regression (4) and (5), which is also consistent with Table 10-A. In contrast, Table
11-B shows that the stock market factors fail to explain the non-domesticated cryptos except that
R ME is marginally significant in stand-alone regressions, Regression (3) and Regression (4). In
addition, all the three crypto-market factors show strong performance in explaining the SDF of
the non-domesticated cryptos in the presence of the stock market factors, particularly when the
confidence level is 97.5% and 99%.

All in all, the estimation results in Table 10s and Table 11s reaffirm the fact that α∗c is a reli-
able measure of domestication that distinguishes between the domesticated cryptos and the non-
domesticated cryptos.

(5) Robustness Tests

The outcomes presented in our study are rooted in the Fama and French size-book to market sorted
25 portfolios as the basis asset for the equity market. Nonetheless, as pointed out by Lewellen, Nagel
and Shanken (2010), the Fama and French double-sorted portfolios exhibit a strong factor structure,
leading to a contraction in pricing errors. In response, we undertake, within this subsection, two
supplementary tests to assuage this concern. Initially, we explore alternative Fama and French
double-sorted portfolios, namely size and operating profit, size and investment portfolio (which form
the Fama and French five-factor model), and size and momentum double-sorted portfolios. Each of
these serves as a candidate for the basis asset, and we rerun the entire procedure for each choice.
In the Internet Appendix, we provide details on the extent of domestication and the behavior of
corresponding stochastic discount factors. While the degree of domestication varies with the choice
of the basis asset, our key observation remains significant—the proportion of domesticated crypto-
assets substantially increases around the structural breakpoint. Notably, determining domestication
based on α̂∗c is found to be a judicious method regardless of the basis asset chosen.

In parallel, we construct the pricing kernel using the risk-premium principal component analysis
(RPPCA) methodology as advocated by Lettau and Pelger (2020). Specifically, we gather 35
anomalies from Chen and Zimmermann (2022) and estimate five generalized principal components,
accounting for risk premiums.28 Subsequently, we compute the implied stochastic discount factor
(SDF) as

Mt = 1− ϕ̂′(F̂t − E[F̂t]),where ϕ̂ = Σ−1
F µF

Following this, α̂∗c is obtained for individual stocks and coin assets, and the entire two-step domes-
tication test is repeated. The design of the risk-premium principal components ensures correlations
close to zero, thereby ensuring that the ensuing results are devoid of a pronounced factor struc-
ture. Table 12-A summarizes the estimation outcomes. The upper panel displays pre-break results,
comparable to those in Table 6-A, indicating a consistent level of domestication using the SDF
implied by RPPCA. In the lower panel, post-break results reveal a substantial increase in overall
domestication after structural breakpoints. Based on a 95% confidence level, only 11.63% of crypto

28The list of 35 anomalies is available in the Internet Appendix.
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assets are identified as domesticated before the break, rising to 50.84% afterward—surpassing the
original figure of 36.39% from Table 6-B.

We demonstrate the robustness of the overall level of domestication to changes in basis assets.
Additionally, we explore the behavior of domesticated and non-domesticated pricing kernels. Table
12-B illustrates the correlation between the implied pricing kernel by RPPCA and the stochastic
discount factor based on the cluster analysis presented in Table 8. For domesticated crypto-assets,
the overall correlation is slightly lower than that in Table 8 but remains positively significant. Non-
domesticated coin assets exhibit correlation close to zero. We employ a bootstrapping procedure
for both domesticated and non-domesticated coin assets, with Table 12-C showcasing correlation
results derived from bootstrapping. Similar to the findings in Table 12-B, correlations for domes-
ticated coins decrease slightly compared to the corresponding Table 9. Nevertheless, p-values at
all confidence levels remain lower than typical thresholds. In summary, we assert the resilience of
our results to variations in basis assets, and findings based on RPPCA align seamlessly with our
primary results, underscoring the stability of our empirical outcomes.

6 Conclusion

There is nothing geometric about the fact that the crypto-market became institutionalized after
many twists and turns in its relatively short history. The institutionalization signifies that this
new set of investable assets are incorporated into the portfolios of major institutional investors
in conjunction with mainstream assets such as stocks. As a consequence, it should give rise to
an inevitable impact on the prices of the cryptos. Then a natural question that would follow is
whether they comove in price with the mainstream assets and, if so, the pricing rule governing the
institutionalized cryptoassets is congruent with that governing the mainstream assets. These are
the questions addressed in this paper.

To answer the above questions, we need to construct a reliable measure which captures the degree
of domestication syndrome. Among a number of candidates, an extensive set of tests for horse
racing gives us the same message. α∗c is the legitimate measure of domestication and the best
performing measure. According to this domestication measure, the proportion of the domesticated
cryptos has skyrockated from 7% to about 36% after the break, February 2020, when we apply
a conserative domestication criterion, 95% confidence level. Interestingly this result is consistent
with the dramatic increase in the institutionalization of cryptoassets documented in the survey
literature.

However, it is pre-mature to conclude that the domestication process of cryptoassets will keep
moving on. Domestication process is topsy-turvy in every dimesion. During the 19th century,
colonists tried to domesticate zebras during the trips to Africa, only to fail. Once they were
thought to be reasonably domesticated, their dormant wileness appeared to surface. In addition,
even formerly domesticated organisms escape controlled cultivation and become easily feralized. As
such, it is fair to say that the domestication process of the cryptoassets is in a precarious position
at this stage.

Our analysis has implication for practical applications . Some investors may prefer domesticated
cryptos as investable instruments to enhance the diversification of their portfolios while keeping
away from crypto-specific risks they are not familiar with. Contrariwise, other investors may favor
yet-to-be domesticated cryptos in search of extra returns that they cannot expect in the mainstream
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assets. α∗c and its corresponding diagnostic method developed in this paper can be used for both
of these diametrically opposite types of investors.
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A Proofs

Proof of Lemma 1: See Hansen and Jagannathan (1991) for the formal proof. Here for com-
pletion, we deliver a less formal proof. The Riesz Representation Theorem states that M(x) is
non-empty and that there is a unique square-integrable random variable, m∗x, in M(x)∩A(x). Since
m∗x ∈ A(x), the projection theorem yields m∗x = θ′xx. Then E(mx · x) = E(m∗x · x) +E(εx · x) = lN
since E(εx · x) = 0 for all εx ∈ A(x)⊥. M(x) − {m∗x} 6= ∅ because A(x)⊥ 6= ∅, which comes
from the market incompleteness assumed in Assumption 2. ‖m∗x‖ = min ‖mx‖ simply due to
‖mx‖2 = ‖m∗x + εx‖2 = ‖m∗x‖2 + ‖εx‖2 < ‖m∗x‖2 ∀mx ∈ M(x) − {m∗x}, given the orthogonality of
εx. q.e.d.

Proof of Lemma 2: A(xa) = {y ∈ L2 such that y = γ′xa, γ ∈ RN}. Since any payoff
y = θ′x ∈ A(x) can be rewritten as y = γ′xa where γ = (θ′ 0)′, thereby y ∈ A(xa). This
proves A(x) ⊂ A(xa). In contrast, in A(xa), there exists y = γ′xa where the last element of γa, i.e.,
the dollar investment on xc, is non-trivial. Such y /∈ A(x), and therefore A(x) 6⊃ A(xa). q.e.d.

Proof of Lemma 3: M(xa) = {mxa |E(mxa · xa) = lN+1} =
{
m∗xa + εxa

∣∣εxa ∈ A(xa)
⊥}, where

m∗xa is the minimum-norm stochastic discount factor which can correcly price xa. Following Lemma
1, m∗xa = θ′xaxa where θxa = E(xax

′
a)
−1lN+1. Since it correctly prices x as well, there exists a

unique ε∗xa such that m∗xa = m∗x + ε∗xa and ε∗xa ∈ A(x)⊥ from Lemma 1. Lemma 2 shows that
A(x) ⊂ A(xa) and A(x) 6⊃ A(xa). Therefore A(x)⊥ ⊃ A(xa)

⊥ and A(x)⊥ 6⊂ A(xa)
⊥. εx ∈ A(x)⊥

and εxa ∈ A(xa)
⊥ for any εx in M(x) and any εxa in M(xa) respectively, which yields the desired

results. q.e.d.

Proof of Lemma 4: The proof here is also from Hansen and Jagannathan (1991). Given
µm, we augment the set of basis assets by adding xf = 1/µm as an additional basis asset. Denote
the payoff vector of this augmented set of basis assets by x′

e
= (xf x′). Correspondingly, we

re-define the attainable set as A(xe) and the set of admissible SDFs as M(xe). The existence of
m∗x|µm is a direct result of the Riesz Represen Theorem as shown in the proof of Lemma 1. Since

m∗x|µm is marketable and its mean is µm, it should be in the form of µm + θ′x(x − µx). To get the
solution to θx, we insert this trial solution to m∗x|µm into the fundamental valuation equation of the
stock basis assets:

lN = E
[
(µm + θ′x(x− µx)) · x

]
= µmµx + Σxθx,

which yields θx = Σ−1
x (lN −µmµx) and, as a result, m∗x|µm = µm+ (lN −µmµx)′Σ−1

x (x−µx). Then
its second-norm is

‖m∗x|µx‖
2 = E(m∗x|µx)2 + σ2(m∗x|µx) = µ2

m + (lN − µmµx)′Σ−1
x (lN − µmµx) (35)

Simplifying Equation (35) yields Equation (10). q.e.d.

Proof of Proposition 1: From (10) and Equation (13), given an arbitrary value of µm, we
can compute the difference in the minimum second-norm between the two SDF:

E
(
m∗2xa|µm

)
− E

(
m∗2x|µm

)
= νaµ

2
m − 2νbµm + νc, (36)
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where νa = axa − ax, νb = bxa − bx and νc = cxa − cx. Let σ2
c = E[(xc − µc)2]. Then the inverse of

covariance matrix of the augmented payoff is

Σ−1
xa =

[
Σx Σxc

Σ′xc σ2
c

]−1

=

[
Σ−1
x + Σ−1

x Σxc

(
σ2
c − Σ′xcΣ

−1
x Σxc

)−1
Σ′xcΣ

−1
x −Σ−1

x Σxc

(
σ2
c − Σ′xcΣ

−1
x Σxc

)−1

−
(
σ2
c − Σ′xcΣ

−1
x Σxc

)−1
Σ′xcΣ

−1
x

(
σ2
c − Σ′xcΣ

−1
x Σxc

)−1

]

=

 Σ−1
x + βcβ′c

σ2
ec
− βc
σ2
ec

− β′c
σ2
ec

1
σ2
ec


Note that we use βc = Σ−1

x Σxc and σ2
ec = σ2

c−β′cΣxβc = σ2
c−Σ′xcΣ

−1
x Σxc. Therefore, we can rewrite

axa as following:

axa = µ′xaΣ−1
xa µxa

= (µ′x µc)Σ
−1
xa

(
µx
µc

)
= µ′x

(
Σ−1
x +

βcβ
′
c

σ2
ec

)
µx − 2

µ′xβc
σ2
ec

µc +
µ2
c

σ2
ec

= µ′xΣ−1
x µx +

1

σ2
ec

[(
β′cµx

)2 − 2
(
β′cµx

)
µc + µ2

c

]
= ax +

1

σ2
ec

(
µc − β′cµx

)2
.

Therefore,

νa =
1

σ2
ec

(
µc − β′cµx

)2
.

Similar computations yields

bxa = bx +
1

σ2
ec

(
µc − β′cµx

) (
1− β′clN

)
cxa = cx +

1

σ2
ec

(
1− β′clN

)2
.

Consequently,

νb =
1

σ2
ec

(
µc − β′cµx

) (
1− β′clN

)
and νc =

1

σ2
ec

(
1− β′clN

)2
,

and thus ν2
b = νaνc. Plugging these solutions to (36) leads to Equation (14). Then, it is straight-

forward to show that the minimum value of the difference in the squared second-norm is zero at

µm = 1−β′clN
µc−β′cµx

. q.e.d.

Proof of Corollary 1: ‖(m∗xa |µm)2‖ − ‖(m∗x|µm)2‖ = 0 for all µm if and only if (α∗c|µm) = 0

for all µm. Given α∗c|µm = (µc − β′cµx)µm − (1 − β′clN ), the two conditions should be satisfied
simultaneously. q.e.d.

Proof of Proposition 2: Since mxa|µm ∈ M(xa) ⊂ M(x), there exists εc|µm , which orthogo-
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nally extends m∗x|µm to mxa|µm ∈M(xa) while keeping the same mean such that:

1 = E[mxa|µm · xc] = E[(m∗x|µm + εc|µm) · xc] = E[m∗x|µm · xc] + E[εc|µm · xc]. (37)

From the projection theorem, the first term in the right-hand-side of Equation (37) is

E[m∗x|µm · xc] = E[m∗x|µm · (βc0 + β′cx+ ec)]

= µmβc0 + β′cE[m∗x|µm · x] + E[m∗x|µm · ec]
= µmβc0 + β′clN

= (µc − β′cµx)µm + β′clN . (38)

In the above, E[m∗x|µm · ec] = 0 since ec ⊥ m∗x|µm . Therefore,

E[m∗x|µm · xc]− 1 = (µc − β′cµx)µm + β′clN − 1 = α∗c|µm ,

which is the proof of Equation (18). In addition, the second term in (37) is

E[εc|µm · xc] = E[εc|µm · (βc0 + β′cx+ ec)]

= βc0E[εc|µm ] + β′cE[εc|µm · x] + E[εc|µm · ec]
= E[εc|µm · ec].

Note that E[εc|µm ] = 0 since εc|µm should not change the mean of the SDF. In addition, E[εc|µm ·x] =

0N since εc|µm ∈ A(x)⊥. Therefore, Equation (37) can be rewritten as:

−α∗c|µm = E(εc|µm · ec), (39)

which is the proof of Equation (19). From the Cauchy-Schwarz inequality,

| − α∗c|µm | = |E(εc|µm · ec)| ≤ ‖εc|µm‖ · ‖ec‖. (40)

In addition, M(xa) ∩ A((1/µm x′a)
′) 6= ∅ and thus the Riesz Representation Theorem dictates the

existence of a marketd payoff, ε∗c|µm = λ0
1
µm

+ λ′xx+ λcxc where λ′ = (λ0 λ′x λc) ∈ RN+2.29 Since
the extended SDF should maintain the same mean,

E(ε∗c|µm) = λ0
1

µm
+ λ′xµx + λcµc = 0,

which yields λ0 = −µm · (λ′xµx + λcµc). Therefore the matketed extension of the SDF is simplified
to

ε∗c|µm = λ′x(x− µx) + λc(xc − µc).

Then, given the orthogonality between x and ec,

E(ε∗c|µm · ec) = E[(λ′x(x− µx) + λc(xc − µc)) · ec]
= λ′xE[(x− µx) · ec] + λcE[(βc0 + β′x+ e− µc) · ec]
= λcσ

2
ec .

29Given µm, we implicitly assumes the existence of the risk-free asset with the gross risk-free interest rate, xf =
1/µm. Then the attainable set is spanned from the augmented set of assets which are composed of the implicit
risk-free asset (xf ), the stock basis assets (x) and the cryptoasset (xc).
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Combining this result with (39) leads to

λc =
−α∗c|µm
‖e‖2

.

Finally, we can determine λx from E[ε∗c|µm · x] = 0N .

0N = E(ε∗c|µm · x)

= E
[(
λ′x(x− µx) + λc(xc − µc)

)
· x
]

= E[(x− µx)x′]λx + λcE[(βc0 + β′cx+ ec − µc) · x]

= Σxλx + λc[(βc0 − µc)µx + E(xx′)β]

= Σxλx + λc[−µxµ′xβc + E(xx′)βc]

= Σx(λx + λcβc),

where we use βc0 = µc − β′cµx. Therefore, λx = −λcβc =
α∗
c|µm
‖e‖2 βc. Combining all these results, we

end up with

ε∗c|µm = λ′x(x− µx) + λc(xc − µc)
= λc

[
−β′c(x− µx) + (xc − µc)

]
= λc · ec

=
−α∗c|µm
‖ec‖2

ec.

Therefore, the second-norm of ε∗c|µm is

‖ε∗c|µm‖ =
| − α∗c|µm |
‖ec‖2

· ‖ec‖ =
|α∗c|µn |
‖ec‖

,

and its square is the same to the right-hand-side of Equation (14) and thus ‖ε∗c|µm‖
2 = ‖m∗xa|µm‖−

‖m∗x|µm‖. Finally, we prove that the marketd extension, ε∗c|µm , has the minimum second-norm

among εc|µms by showing that Equation (40) holds with equality.

‖ε∗c|µm‖ · ‖ec‖ =
|α∗c|µm |
‖ec‖

· ‖ec‖ = |α∗c|µm |,

and therefore Equation (40) holds with equality. q.e.d.

Proof of Proposition 3: We prove (i) and (ii) in a sequence.

(i) From Equation (22), ‖ε∗c|µm‖ = 0 if and only if α∗c|m = 0. Corollary 1 proves that α∗c|µm = 0

for all µm except µm if and only if the two conditions specified in (16) are met: i.e., β′cµx = µc
and β′clN = 1. If the two conditions are ‘perfectly’ satisfied, µm = 0

0 is not defined and this
is concrete evidence that the frontier does not move at all. However, in a sample, these two
conditions hold P-almost never. Therefore, the estimate of µm is defined P-almost surely in
a sample sapce. Combining all of these results, α∗c|µ 6= 0 (or equivalently ‖ε∗c|µm‖ > 0) for
any arbitrary µm other than µm implies that these two conditions are not satisfied and thus
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‖ε∗c|µn‖ > 0 for all µn other than the estimate of µm as well. Geometrically this means an

upward shift in the mean-second norm frontier of the SDF. In sum, α∗c|µ 6= 0 (or equivalently

‖ε∗c|µm‖ > 0) for any arbitrary µm other than the estimate of µm is equivalent to the condition
of the crypto being neither replicable nor aligned in price with the stock basis assets.

(ii) Suppose that the cryptoasset makes an upward shift of the frontier. However, even in such a

case, there still exists a unique solution, µm = 1−β′clN
µc−β′cµx

, which makes α∗c|µm = 0 or equivalently

‖ε∗c|x‖ = 0 as shown in Proposition 1. Equation (18) in Proposition 2 can be rewritten in the
form of the expected gross return:

(α∗c|µm)

µm
= (µc − β′cµx)− 1

µm
(1− β′clN ). (41)

Let µf denote the inverse of µm, i.e., µf = 1
µm

= µc−β′cµx
1−β′clN

. Plugging µf into Equation (41)
results in

0 = µc −
[
(1− β′clN )µf + β′cµx

]
. (42)

Therefore, µf is the required level of the risk-free rate which equates the expected gross return
on the crypto to that on the replicating portfolio. Unlike in (i), Equation (42) shows that the
replicating portfolio herein includes the risk-free asset; the investment weight on it is 1−β′clN
whereas the weights on the stock basis assets are βc. Put differently, µf can be thought of a
shadow interest rate implied by the cryptoasset, which is a solution to Equation (42). In the
presence of the market risk-free asset, the risk-free rate should be the same to this shadow
risk-free rate. If so, the cryptoasset is replicable by and is aligned in price with the augmented
set of basis assets (the stock basis assets+the risk-free asset) and vice versa.

This completes the proof. q.e.d.

Proof of Proposition 4: Because m∗
e

itself is the GMN-SDF of the extended set of basis assets, we
can apply Equation (12) to m∗

e
, which yields µ∗me

= µ′xeE(xex
′
e
)−1lN+1. The Sherman-Morrison

formula leads to

µ∗me

= µ′xe

(
Σ−1
xe −

Σ−1
xe µxeµ

′
xeΣ−1

xe

1 + µ′xeΣ−1
xe µxe

)
lN+1

=
µ′xeΣ−1

xe lN+1

1 + µ′xeΣ−1
xe µxe

. (43)

Because xf ⊥ x,

Σ−1
xe =

[
1
σ2
f

0′N+1

0N+1 Σ−1
x

]
.

Therefore, µ′xeΣ−1
xe µxe =

µ2
f

σ2
f

+ µ′xΣ−1
x µx =

µ2
f

σ2
f

+ ax and µ′xeΣ−1
xe lN+1 =

µ2
f

σ2
f

+ µ′xΣ−1
x lN =

µ2
f

σ2
f

+ bx.

Plugging these results into (43) yields the first equation of (26). Applying the first-order Taylor
expansion around σ2

f = 0 yields the second equation. In addition, Equation (15) can be transformed
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into:

α∗c|µ∗me

= (µc − β′ceµxe)µ∗me

− (1− β′celN+1)

= (µc − βcfµf − β
′
cµx)µ∗me

− (1− βcf − β
′
clN )

= βcf (1− µfµ∗me

) + (µc − β′cµx)µ∗me

− (1− β′clN ). (44)

where βcf is the investment weight on the locally risk-free asset. In the first term of the last
equation, µfµ

∗
me

is

µfµ
∗
me

= µf

(
µf + bxσ

2
f

µ2
f + (1 + ax)σ2

f

)
≈ µf

(
1

µf
+ υJ

)
= 1 + µfυJ .

Pluggin this result back into Equation (44) yields

α∗c|µ∗me

≈ (µc − β′cµx)
1

µf
− (1− β′clN ) + (µc − β′cµx − βcfµf )υJ ,

and υJ ≈ 0 yields Equation (27).

Lemma A.1: The pricing error of xc against the GMN-SDF is

α∗c = (β′clN − 1)− (β′cµx − µc)
bx

1 + ax
= b ′clN − 1. (45)

Proof: From the Sherman-Morrison formula, we get

Σ−1
x = E(xx′)−1 +

Σ−1
x µxµ

′
xΣ−1

x

1 + µ′xΣ−1
x µx

.

Using this result and the definition of βc,

β′clN − 1 = Σ′xcΣ
−1
x lN − 1

=
(
E(xcx)− µcµx

)′
Σ−1
x lN − 1

= E(xcx
′)

[
E(xx′)−1 +

Σ−1
x µxµ

′
xΣ−1

x

1 + µ′xΣ−1
x µx

]
lN − µc(µ′xΣ−1

x lN )− 1

= E(xcx
′)E(xx′)−1lN +

E(xcx
′)Σ−1

x µx
1 + ax

bx − µcbx − 1

= b ′clN +
(Σxc + µcµx)′Σ−1

x µx
1 + ax

bx − µcbx − 1

= b ′clN +
β′cµx + µcax

1 + ax
bx − µcbx − 1

= b ′clN − 1 +
β′cµx − µc

1 + ax
bx,

and this completes the proof of Equation (45). q.e.d.

Lemma A.2: The squared second-norm of ω is

‖ωc‖2 = σ2
ec + (1 + ax)E(ωc)

2, (46)
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and

E(ωc) =
βc0

1 + ax
, (47)

and thus the alternative expression of ‖ωc‖2 is

‖ωc‖2 = σ2
ec +

β2
c0

1 + ax
. (48)

Proof: The two alternative idiosyncratic components are

ec = (xc − µc)− β′c(x− µx)

ωc = xc − b ′cx,

and thus ec = ωc − (µc − β′cµx)− (βc − bc)′x, which yields

σ2
ec = E(ω2

c )−E(ωc)
2−(βc−bc)′Σx(βc−bc) =⇒ E(ω2

c ) = σ2
ec+E(ωc)

2+(βc−bc)′Σx(βc−bc), (49)

where

βc − bc = Σ−1
x Σxc − E(xx′)−1E(xxc)

= Σ−1
x

(
E(xxc)− µxµc)−

[
Σ−1
x −

Σ−1
x µxµ

′
xΣ−1

x

1 + ax

]
E(xxc)

=
Σ−1
x µxµ

′
xΣ−1

x

1 + ax
E(xxc)− Σ−1

x µxµc.

Therefore,

(βc − bc)′Σx(βc − bc) =
E(xcx

′)Σ−1
x µxµ

′
xΣ−1

x

1 + ax
· Σx ·

Σ−1
x µxµ

′
xΣ−1

x E(xxc)

1 + ax

−2
E(xcx

′)Σ−1
x µxµ

′
xΣ−1

x

1 + ax
· Σx · Σ−1

x µxµc

+µ2
cµ
′
xΣ−1

x · Σx · Σ−1
x µx

=
ax

(1 + ax)2

[
E(xcx

′)Σ−1
x µx

]2 − 2
ax

1 + ax

[
E(xcx

′)Σ−1
x µx

]
µc + axµ

2
c

= ax

[
E(xcx

′)Σ−1
x µx

1 + ax
− µc

]2

. (50)

Therein,

E(xcx
′)Σ−1

x µx = E(xcx
′)

[
E(xx′)−1 +

Σ−1
x µxµ

′
xΣ−1

x

1 + ax

]
µx

= b ′cµx +
E(xcx

′)Σ−1
x µx ax

1 + ax
,

and we can solve this equation for E(xcx
′)Σ−1

x µx:

E(xcx
′)Σ−1

x µx = (1 + ax)b ′cµx. (51)
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Plugging this into (50) yields

(βc − bc)′Σx(βc − bc) = ax(b ′cµx − µc)2

= axE(ωc)
2,

and thus (49) can be rewritten as E(ω2) = σ2
ec + (1 + ax)E(ω)2, which is Equation (46). Further

we can re-solve E(xcx
′)Σ−1

x µx in the following way:

E(xcx
′)Σ−1

x µx =
[
E(xcx

′)− µcµ′x
]

Σ−1
x µx + µcµ

′
xΣ−1

x µx

= β′cµx + axµc. (52)

Equating (52) and (51), we get b ′cµx = β′cµx+axµc
1+ax

, which yields

E(ωc) = µc − b ′cµx = µc −
β′cµx + axµc

1 + ax
=
µc − β′cµx

1 + ax
=

βc0
1 + ax

,

which is Equation (47). Plugging this result into (46) yields (48). q.e.d.

Proof of Proposition 5: The proof is similar to that of Proposition 2. Since mxa ∈ M(xa) ⊂
M(x), there exists εc, which orthogonally extends m∗x to any mxa ∈M(xa) such that:

1 = E[mxa · xc] = E[(m∗x + εc) · xc] = E[m∗x · xc] + E[εc · xc]. (53)

We project xc on x to construct a mimicking portfolio of xc

xc = b ′cx+ ωc; where ωc ⊥ x,

and the projection theorem leads to b = E(xx′)−1E(xxc). Then, the first term in (53) is

E[m∗x · xc] = E[m∗x(b ′cx+ ωc)]

= b ′cE(m∗x · x) + E(m∗x · ωc)
= b ′clN .

In the above, E(m∗x · ωc) = 0 since m∗x is a linear function of x to which ωc is orthogonal. In
addition, the second term in (53) is

E(εc · xc) = E[εc(b ′cx+ ωc)]

= b ′cE(εc · x) + E(εc · ω)

= E(εc · ωc).

Note that E(εc · x) = 0 since εc ∈ A(x)⊥. Therefore, Equation (53) can be rewritten as:

1− b ′clN = E(εc · ωc). (54)

Note that 1− b ′clN = −α∗c . From the Cauchy-Schwarz inequality,∣∣α∗c ∣∣ =
∣∣1− b ′clN

∣∣ = |E(εc · ω)| ≤ ‖εc‖‖ωc‖. (55)
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In addition, M(xa) ∩ A)(xa) and thus the Riesz Representation Theorem dictates the existence of
ε∗c = ψ′xa where ψ′ = (ψ′x ψc) ∈ RN+1 Then, given the orthogonality between x and ω,

E(ε∗c · ωc) = E[(ψ′xx+ ψcxc) · ωc]
= E[(ψ′xx+ ψc(b ′cx+ ωc)) · ωc]
= E[(ψx + ψcb ′)x · ωc] + ψcE(ω2

c )

= ψcE(ω2
c ).

Therefore,

ψc =
1− b ′lN
‖ωc‖2

,

which is a sort of ‘normalized mispricing.’ We can determine ψx from E(ε∗c · x) = 0N .

0N = E(ε∗c · x)

= E[(ψ′xx+ ψcxc) · x]

= E[(ψ′xx+ ψc(b ′cx)) · x]

= E(xx′)(ψx + ψcbc),

which yields ψx = −ψcbc = − (1−b′clN ))bc
‖ωc‖2 . Therefore,

ε∗c = ψ′xx+ ψcxc

= −(1− b ′clN ) b ′c
‖ωc‖2

x+
1− b ′clN
‖ωc‖2

xc

=
1− b ′clN
‖ωc‖2

(xc − b ′cx)

=
1− b ′clN
‖ωc‖2

ωc

or
= ψcωc
or
=
−α∗c
‖ωc‖

· ωc.

Therefore, the second-norm of ε∗ is

‖ε∗c‖ =
|1− b ′clN |
‖ωc‖2

· ‖ωc‖ =
|α∗c |
‖ωc‖

.

We prove that the second-norm of ε∗ is, in fact, the minimum distance from m∗x to M(xa) by
showing that (55) holds with equality:

‖ε∗c‖ · ‖ωc‖ =
|α∗c |
‖ωc‖

· ‖ωc‖ = |α∗c | = |E(ε∗c · ωc)|.
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Finally, we prove that ‖ε∗c‖ = ‖m∗xa‖− ‖m
∗
x‖. From Equation (12) and the definitions of νa, νb and

νc in the proof of Proposition 1:

‖m∗xa‖
2 − ‖m∗x‖2 =

(1 + axa)cxa − b2xa
(1 + axa)

− (1 + ax)cx − b2x
(1 + ax)

=
(1 + ax)(νaνc − ν2

b ) + (1 + ax)2νc + b2xνa − 2(1 + ax)bxνb
(1 + ax)(1 + ax + νa)

=
(1 + ax)2νc + b2xνa − 2(1 + ax)bxνb

(1 + ax)(1 + ax + νa)

=
(1 + ax)2 (1−β′clN )2

σ2
ec

+ b2x
(µc−β′cµx)2

σ2
ec

− 2(1 + ax)bx
(1−β′clN )(µc−β′cµx)

σ2
ec

(1 + ax)(1 + ax + νa)

=
[(1 + ax)(1− β′clN )− bx(µc − β′cµx)]2

σ2
ec(1 + ax)(1 + ax + νa)

=
(1 + ax)

[
(1− β′clN )− bx

1+ax
(µx − β′cµx)

]2

σ2
ec(1 + ax + νa)

=
(1 + ax)(−α∗c)2

σ2
ec(1 + ax + νa)

=
α∗2c

σ2
ec

(
1 + νa

1+ax

) . (56)

In the above, we used the fact that νaνc = ν2
b . To complete the proof, we need to show that

α∗c = b ′clN − 1 and σ2
ec

(
1 + νa

1+ax

)
= E(ω2

c ). Lemma A.1 proves the first, α∗c = b ′clN − 1. The

second one is

σ2
ec

(
1 +

νa
1 + ax

)
= σ2

ec

[
1 +

(µc − β′cµx)2

(1 + ax)σ2
ec

]
= σ2

ec +
β2
c0

1 + ax
= E(ω2

c ),

where the last equality comes from Lemma A.2. This completes the proof. q.e.d.

Proof of Corollary 2: Given Proposition 5, proofs are straightforward. First, if ‖ε∗c‖ 6= 0,
which means α∗c 6= 0. From Corollary 1, this means that both of two conditions, µc = β′µx and
β′lN = 1, are not simultaneously satisfied. In such a case, Proposition 3 states that the mean-
second norm frontier of the SDF shifts up. The opposite is case (i) wherein both conditions are
met. Then, the frontier retrieved from the augmented set of assets precisely coincides with that
retrieved from the risky basis assets. Finally, case (ii) occurs when the tangent point derived in
Proposition 1 occurs coincidently at the GMN-SDF. As such, the frontier overall shifts up but the
two frontiers meet each other with tangency at the minimum norm. At other points, the frontier
retrieved from the augmented set of assets is located above. However, α∗c = b ′clN − 1 holds only
at µ∗m. At other µm, this relation does not hold and the corresponding non-zero α∗c|µm is based on

the regression (17), which includes the intercept term or eqivalently the risk-free asset. However, it
violates the assumption that the risk-free asset does not exist. As such, the shift-up of the frontier
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at the mean value other than µ∗m does not deliver any economic meaning. All in all case (ii) is not
different from case (i) in its economic implication.

Lemma A.3: The followings are true:

µ′xE(xx′)1µx =
ax

1 + ax

l′NE(xx′)−1lN =
cx + cxax − b2x

1 + ax

µ′xE(xx′)−1lN =
bx

1 + ax
.

Proof: From Lemma A.1., the Sherman-Morrison formula delivers

E(xx′)−1 = Σ−1
x −

Σ−1
x µxµ

′
xΣ−1

x

1 + µ′xΣ−1
x µx

=
1

1 + µ′xΣ−1
x µx

[
Σ−1
x + Σ−1

x

(
µ′xΣ−1

x µx
)
− Σ−1

x µxµ
′
xΣ−1

x

]
.

Then,

µ′xE(xx′)−1µx =
1

1 + ax

[
µ′xΣ−1

x µx +
(
µ′xΣ−1

x µx
)2 − µ′xΣ−1

x µxµ
′
xΣ−1

x µx

]
=

ax
1 + ax

µ′xE(xx′)−1lN =
1

1 + ax

[
µ′xΣ−1

x lN +
(
µ′xΣ−1

x lN
) (
µ′xΣ−1

x µx
)
− µ′xΣ−1

x µxµ
′
xΣ−1

x lN
]

=
bx

1 + ax

l′NE(xx′)−1lN =
1

1 + ax

[
l′NΣ−1

x lN +
(
l′NΣ−1

x lN
) (
µ′xΣ−1

x µx
)
− l′NΣ−1

x µxµ
′
xΣ−1

x lN
]

=
cx + cxax − b2x

1 + ax
.

Recall that µ′xΣ−1
x µx = ax, µ′xΣ−1

x lN = bx and l′NΣ−1
x lN = cx. q.e.d.

Proof of Proposition 6: We derive the exact sample distribution of α̂∗c . From Lemma A.1,
we know that α∗c = (β′clN − 1) − (β′cµx − µc) bx

1+ax
= b ′clN − 1. Herein we derive the sample distri-

bution based on b̂c
′
lN − 1. The OLS estimator of bc is

b̂c = (X ′X)−1X ′Xc = (X ′X)−1X ′(βc0lT +Xβc + ec) = βc + βc0(X ′X)−1X ′lT + (X ′X)−1X ′ec,

where X and Xc denote a T ×N sample matrix and T × 1 sample vector corresponding x and xc
respectively. Similarly ec is T × 1 vector of true residuals. We assume ec ∼ N(0T , σ

2
ecIT ), i.e., is

normally distributed with zero mean and variance of σ2
ecIT . Therefore,

α̂∗c = b̂c
′
lN − 1 = β′clN + βc0l

′
TX(X ′X)−1lN + ec

′X(X ′X)−1lN − 1, (57)

where

l′TX(X ′X)−1lN =

(
l′TX

T

)(
X ′X

T

)−1

lN = µ̂′xΩ̂−1
x lN ,
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where µ̂x = X′lT
T = 1

T

∑T
t=1Xt is the estimate of µx and similarly Ω̂x = X′X

T = 1
T

∑T
t=1X

′
tXt is the

estimator of E(xx′). Then, using the result of Lemma A.3,

l′TX(X ′X)−1lN = µ̂′xΩ̂−1
x lN =

b̂x
1 + âx

,

where âx and b̂x denote the sample estimates of ax and bx. One thing to note is that X is a
matrix of exogenous variables, not random variables in the least squares estimation. This implies
that any variables which are a sole function of X, although sample estimates, are not exposed to
any statistical inference.30 That is, we do not need to take into account the additional statistical

inference on µ̂x, Ω̂x(= Ê(xx′)), Σ̂x, Σ̂xc, âx, b̂x and ĉx and any relations among them such as the
Sherman-Morrison formula that hold in population also hold in a sample. Combining this result
with βc0 = µc − β′cµx, we can rewrite Equation (57) to:

α̂∗c = β′clN − 1 + (µc − β′cµx)
b̂x

1 + âx
+ ec

′X(X ′X)−1lN = α∗c + ec
′X(X ′X)−1lN , (58)

and thus it is unbiased. Its variance is

var
(
α̂∗c
)

= l′N (X ′X)−1X ′var(ec)X(X ′X)−1lN

= σ2
ecl
′
N (X ′X)−1lN

= σ2
ecl
′
N

Ω̂−1
x

T
lN

=
σ2
ec

T

ĉx + ĉxâx − b̂2x
1 + âx

,

wherein the last equality comes from Lemma A.3. Therefore, α̂∗c follows the following normal
distribution in a finite sample:

α̂∗c ∼N

[
α∗c ,

σ2
ec

T
· ĉx + ĉxâx − b̂2x

1 + âx
,

]
.

In sum, α̂∗c is unbiased and its variance is proportional to the idiosyncratic variance, σ2
ec . q.e.d.

Lemma A.4: Consider the following linear and quadratic forms:

Lz = l′N (X ′X)−1X ′z

z′Mez = z′(IT −Xe(X
′
eXe)

−1X ′e)z,

where X is a T × N -dimensional matrix and Xe = (lT X) is a T × (N + 1)-dimensional matrix,
which is a concatenation of lT and X. z is a T × 1 standard normal vector. Then, LMe = 0′T and
the linear function Lz and the idempotent quadratic form, z′Mez, are statistically independent.

Proof: See Greene (1990), for example, for the fact that if Me is an idempotent matrix and
LMe = 0′T , Lz and z′Mez are independent. As such, the remainder of the proof is to prove Me

is idempotent and LMe = 0. It is straightforward to show Me is both symmetric, Me = M ′e and

30For an illustration, consider var(β̂) = σ2
e(X ′X)−1 in a standard OLS, y = Xb+ e with var(e) = σ2

e . We can take

(X ′X)−1 = Ê(xx′)
−1

T
=

Ω̂−1
x
T

.
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idempotent, M2
e = Me. Now let us prove LMe = 0. Let M = IT − X(X ′X)−1X ′, which is also

idempotent. Then, Xe(X
′
eXe)

−1X ′e in Me can be rewritten as:

Xe(X
′
eXe)

−1X ′e = (lT X)

(
T l′TX

X ′lT X ′X

)−1(
lT
X ′

)

= (lT X)

 1
l′TMlT

− l′TX(X′X)−1

l′TMlT

− (X′X)−1X′lT
l′TMlT

(
X ′X − X′lT l′TX

T

)−1

( lT
X ′

)

=
lT l
′
T

l′TMlT
− X(X ′X)−1X ′lT l

′
T

l′TMlT
− lT l

′
TX(X ′X)−1X ′

l′TMlT
+X

(
X ′X − X ′lT l

′
TX

T

)−1
X ′

Pluggin this into Me yields

Me = IT −
lT l
′
T

l′TMlT
+
X(X ′X)−1X ′lT l

′
T

l′TMlT
+

lT l
′
TX(X ′X)−1X ′

l′TMlT
−X

(
X ′X −

X ′lT l
′
TX

T

)−1

X ′

Therefore, the product of L and Me becomes

LMe = l′N (X ′X)−1X ′Me

= l′N (X ′X)−1X ′ −
l′N (X ′X)−1X ′lT l

′
T

l′TMlT
+

l′N (X ′X)−1X ′lT l
′
T

l′TMlT

+
l′N (X ′X)−1X ′lT l

′
TX(X ′X)−1X ′

l′TMlT
− l′N

(
X ′X −

X ′lT l
′
TX

T

)−1

X ′

=
1

T
l′N Ω̂−1

x X ′ +
l′N Ω̂−1

x µ̂xµ̂
′
xΩ̂−1

x X ′

l′TMlT
− 1

T
l′N Σ̂−1

x X ′

= l′N

[
1

T
Ω̂−1
x +

Ω̂−1
x µ̂xµ̂

′
xΩ̂−1

x

l′TMlT
− 1

T
Σ̂−1
x

]
X ′.

In the above,

l′TMlT = l′T (IT −X(X ′X)−1X ′)lT

= l′T lT − T 2 l
′
TX

T

(
X ′X

T
· T
)−1 X ′lT

T

= T − T µ̂′xΩ̂−1
x µ̂x

= T

(
1− âx

1 + âx

)
=

T

1 + âx
, (59)

which utilizes µ̂′xΩ̂−1
x µ̂x = âx

1+âx
from Lemma A.3. Plugging this result back into LMe yields

LMe =
1

T
l′N

[
Ω̂−1
x + (1 + âx)Ω̂−1

x µ̂xµ̂
′
xΩ̂−1

x − Σ̂−1
x

]
X ′,
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where

Ω̂−1
x µ̂x =

(
Σ̂−1
x −

Σ̂−1
x µ̂xµ̂

′
xΣ̂−1

x

1 + âx

)
µ̂x = Σ̂−1

x µ̂x −
Σ̂−1
x µ̂xâx
1 + âx

=
Σ̂−1
x µ̂x

1 + âx
.

Finally,

LMe =
1

T
l′N

[
Ω̂−1
x + (1 + âx)

Σ̂−1
x µ̂xµ̂

′
xΣ̂−1

x

(1 + âx)2
− Σ̂−1

x

]
X ′

=
1

T

[
Ω̂−1
x +

Σ̂−1
x µ̂xµ̂

′
xΣ̂−1

x

(1 + âx)
− Σ̂−1

x

]
X,′

= 0′T

where the last equality comes from the Sherman-Morrison formula. q.e.d.

Proof of Proposition 7-A: Below we derive the unbiased estimator of ‖ec‖, α∗c
σec

and α∗cσec .

(i) The unbiased estimator of σec

Given that the unbiased estimator of σ2
ec is σ̂2

ec =
∑T
t=1 ê

2
ct

T−N−1 , which is χ2 distributed:

(T−N−1)σ̂2
ec

σ2
ec

∼ χ2(T−N−1).

Then, its square-root has a χ distribution:√
(T−N−1)σ̂2

ec

σ2
ec

=
√
T−N−1

√
σ̂2
ec

σec
∼ χ(T−N−1),

and its first moment is31

E

[
√
T−N−1

√
σ̂2
e

σec

]
=
√

2
Γ
(
T−N

2

)
Γ
(
T−N−1

2

) .
Therefore,

E

[√
T−N−1 Γ

(
T−N−1

2

)
√

2 Γ
(
T−N

2

) √
σ̂2
ec

]
= σec .

Therefore, the unbiased estimator of σec is

sec =

√
T−N−1

2

Γ
(
T−N−1

2

)
Γ(T−N2 )

√
σ̂2
ec . (60)

(ii) The unbiased estimator of α∗
c

‖ec‖
From Proposition 6,

α̂∗c
σec√
T

√
ĉx+âxĉx−b̂2x

1+âx

∼N(α∗c , 1) .

31See Gooch (2010).
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From Equation(58), we know that

α̂∗c − α∗c
σec

= l′N (X ′X)−1X ′
(

ec
σec

)
let
= L

(
ec
σec

)
. (61)

On the other hand, the least squares residuals are êc = Mexc = Meec, where Xe = (lT X)
and Me is symmetric and imdemponent and its trace is T −N − 1. The well-known results
from the standard least square regression yields

(T −N − 1)σ̂2
ec

σ2
ec

=

(
ec
σec

)′
(IT −Xe(X

′
eXe)

−1X ′e)

(
ec
σec

)
let
=

(
ec
σec

)′
Me

(
ec
σec

)
. (62)

(61) is a linear function of standard normal variates and (62) is their quadratic function. From

Lemma A.4, LMe = 0 and thus L
(
ec
σec

)
in (61) and

(
ec
σec

)′
Me

(
ec
σec

)
in (62) are statistically

independent. As a result,

α̂∗c − α∗c
σec√
T

√
ĉx+âxĉx−b̂2x

1+âx

=

√
T√

ĉx+âxĉx−b̂2x
1+âx

L

(
ec
σec

)

is also independent of
(

ec
σec

)′
Me

(
ec
σec

)
. Then the ratio of the non-zero mean normal variate

with unit standard deviation to the χ distributed random variate becomes

α̂∗c
σec√
T

√
ĉx+âxĉx−b̂2x

1+âx√
(T−N−1)σ̂2

e
σ2
ec

/
√
T−N−1

∼ tnc

T −N − 1,
α∗c

σec√
T

√
ĉx+âxĉx−b̂2x

1+âx

 (63)

where tnc(K,λ) is a non-central t distribution with K degrees of freedom and non-centrality
parameter λ.32 Under the assumption of T − N − 1 > 1, we first simplify and take the
expectation of the left-hand-side of (63):

E

 α̂∗c√
σ̂2
ec
T

√
ĉx+âxĉx−b̂2x

1+âx

 =
α∗c

σec√
T

√
ĉx+âxĉx−b̂2x

1+âx

√
T −N − 1

2

Γ
(
T−N−2

2

)
Γ
(
T−N−1

2

) .
32The non-central t distribution is

tnc(K,λ) =
N(λ, 1)

χ2(K)/
√
K
,

where N(λ, 1) is a normal variate with mean µ and unit variance whereas χ(K) is a χ distribution with K degrees of
freedom. The ratio of the normal variate with non-zero mean with the χ variate divided by its square-roof of degrees
of freedom is a non-central t distribution. Its square, tnc(K,λ)2 is F (1,K, λ2), a non-central F distribution with 1
numerator degree of freedom, K denominator degrees of freedom and non-centrality parameter λ2. When K > 1, the
first moment of a non-central t variate exists and it is

E[tnc(K,λ)] = λ

√
K

2

Γ(K−1
2

)

Γ(K
2

)
.

See Cousineau and Laurencelle (2011) for details.
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This can be rewritten as:

E

[√
2

T −N − 1

Γ
(
T−N−1

2

)
Γ
(
T−N−2

2

) α̂∗c√
σ̂2
ec

]
=
α∗c
σec

.

Therefore, the unbiased estimator of α∗c
‖ec‖ is

(̂
α∗c
σec

)
=
√

2

T −N − 1

Γ
(
T−N−1

2

)
Γ
(
T−N−2

2

) α̂∗c√
σ̂2
ec

.

One can rewrite the above result as an expression of sec using the relation between σ̂2
ec and

sec .

(iii) The unbiased estimator of α∗c‖ec‖
In (ii), we show that α∗c is independent of σ̂2

ec . Since s2
ec is a linear function of σ̂2

ec , α
∗
c is also

independent of s2
ec . If two random variables are independent, the functions of each random

variables are also independent. As a result,

E
(
α̂∗c

√
s2
ec

)
= E (α̂∗c)E

(√
s2
ec

)
= E(α̂∗c)E(sec) = α∗cσec .

Therefore the unbiased estimator of α∗cσec is

α̂∗cσec = α̂∗csec . q.e.d.

Proof of Proposition 7-B: Below we derive the pseudo-unbiased estimator of ‖ωc‖, α∗c
‖ωc‖ and

α∗c‖ωc‖. Before doing so, we first derive the unbiased estimator of ‖ωc‖2 = E(ω2
c ) in two different

ways. From Lemma A.2, ‖ωc‖2 = σ2
ec +

β2
c0

1+ax
. Recall that the unbiased estimator of σ2

ec is σ̂2
ec =

êc
′êc

T−N−1 . The least sqaures residuals in the absence of the intercept are

ω̂c = Xc −X b̂c
= Xc −X(X ′X)−1X ′Xc

= (IT −X(X ′X)−1X ′)Xc

= MXc

= M(βc0lT +Xβc + ec)

= βc0MlT +Mec, (64)

since MX = 0T×N . Then ω̂c
′lT = βc0l

′
TMlT + ec

′MlT , and as a result,

ω̂c
′lT

l′TMlT
= βc0 +

l′TMec
l′TMlT

.

Further, var
(

l′TMec
l′TMlT

)
= σ2

ec
l′TMITMlT
(l′TMlT )2 =

σ2
ec

l′TMlT
because M is idempotent. As shown in (59),

l′TMlT = T
1+âx

. In sum,

β̂c0 =
ω̂c
′lT

l′TMlT
∼N

(
βc0,

1 + âx
T

σ2
ec

)
.
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As a result, E(β̂2
c0) = β2

c0 + 1+âx
T σ2

ec , and thus β̂2
c0 is a biased estimator of β2

c0 unless βc0 is zero.
Because we are interested not only in testing βc0 = 0, but also in measuring the degree of domesti-
cation. As such, we need to take into account the bias driven by non-zero βc0. To correct for such
a bais, we subtract it by the unbiased estimator of 1+hatax

T σ2
ec such that

E

[
β̂2
c0 −

1 + âx
T

σ̂2
ec

]
= β2

c0.

Finally we make a sum of the two unbiased estimators,

σ̂2
ωc = ‖̂ωc‖2 = σ̂2

e +
β̂2
c0 − 1+âx

T σ̂2
e

1 + âx
=

β̂2
c0

1 + âx
+
T − 1

T
σ̂2
ec , (65)

and E(σ̂2
ωc) = σ2

ec +
β2
c0

1+âx
, which is unbiased. For a use later, we derive this unbiased estimator by

an alternative method. We begin with ω̂c = βc0MlT +Mec ∼ NT (βc0MlT , σ
2
ecM) in (64). Given

that the trace of M is T −N , its quadratic form:

ω̂c
′(σ2

ecM)−1ω̂c ∼ χ2
nc

(
T −N,

β2
c0l
′
TMlT

σ2
ec

)
, (66)

which is a noncentral χ2 distribution with T −N degrees of freedom and noncentrality parameter
β2
c0l
′
TMlT /σ

2
ec . In addition, it is easy to show that ω̂c

′M−1ω̂c = ω̂c
′ω̂c. The expected value of the

noncentral χ2 is the sum of the degrees of freedom and the noncentrality parameters, which yields

E

(
1

σ2
ec

ω̂c
′ω̂c

)
= T −N +

β2
c0l
′
TMlT

σ2
ec

.

Since l′TMlt = T/(1 + âx), E(ω̂c
′ω̂c) = β2

c0
T

1+ax
+ (T −N)σ2

ec . Therefore, ω̂c
′ω̂c/T is a consistent

estimator of E(ω2), but it is biased. To correct for such a bias, we add N
T σ̂

2
ec . Then,

E

(
ω̂c
′ω̂c
T

+
N

T
σ̂ec

2

)
=

β2
c0

1 + ax
+
T −N
T

σ2
ec +

N

T
σ2
ec =

β2
c0

1 + ax
+ σ2

ec .

Therefore, the unbiased estimator is

σ̂2
ωc = ‖̂ωc‖2 =

ω̂c
′ω̂c
T

+
N

T
σ̂2
ec . (67)

Given the definition of ω̂c, it is, albeit tedious, straightfoward to prove the equality of (65) and
(67).

(i) The pseudo-unbiased estimator of ‖ωc‖ =
√
E(ω2)

Given the unbiased estimator ‖ωc‖2,

T ‖̂ωc‖2
σ2
ec

=
ω̂c
′ω̂c
σ2
ec

+N
σ̂ec

2

σ2
ec

=
ec
′

σec

(
M +

N

T −N − 1
Me

)
ec
σec

+ 2
βc0l

′
TM

σec

ec
σec

+
β2
c0l
′
TMlT

σ2
ec

,

which is a generalized chi-squared variable. As far as we know, the expected value of its
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square root is yet to be found. Even in the case that we can get it, it does not guarantee
the existence of the unbiased estimator of ‖ωc‖. As such, we may rely upon a simulation to
correct for a Jensen’s inequality stemming from the square root, which is a nonlinear function.
As an alternative, here we take a different approach to approximate it. Taking a square root
on (66) yields √

ω̂c
′ω̂c
σ2
ec

∼ χnc

(
T −N,

√
β2
c0l
′
TMlT

σ2
ec

)
, (68)

which is a noncentral chi distribution with T−N degrees of freedom and centrality parameter,√
β2
c0l
′
TMlT
σ2
ec

. We construct an estimator, the degrees of freedom of which are consistent with

the χnc distribution:

ˆ̂σ2
ωc =

ω̂c
′ω̂c

T −N
. (69)

Then, the first moment of the χnc distribution is

E

(√
ω̂c
′ω̂c
σ2
ec

)
= E

(√
(T −N)ˆ̂σ2

ωc

σ2
ec

)
=

√
π

2
L
T−N

2
−1

1/2

(
−
β2
c0l
′
TMlT

2σ2
ec

)
, (70)

where Lθuθl (·) is a generalized Laguerre fuction.33 Let θ =
β2
c0l
′
TMlT
σ2
ec

, the centrality param-

eter of the χ2
nc distribution. Given the well-known relationship between the generalized

Laguerre function and the confluent hypergeometric function of the first kind, Lqp(y) =
(q+1)p
p! 1F1(−p; q + 1; y) (where (a)b is the Pochhammer symbol), we can rewrite (70):

E

(√
(T −N)ˆ̂σ2

ωc

σ2
ec

)
=

√
π

2
L
T−N

2
−1

1/2

(
−θ

2

)

=

√
π

2

(
T−N

2

)
1/2

1
2 !

1F1

(
−1

2
;
T −N

2
;−θ

2

)
=

√
π

2

Γ
(
T−N+1

2

)
/Γ
(
T−N

2

)
√
π

2

1F1

(
−1

2
;
T −N

2
;−θ

2

)

=
√

2
Γ
(
T−K+1

2

)
Γ
(
T−N

2

) 1F1

(
−1

2
;
T −N

2
;−θ

2

)
, (71)

where we use (a)b = Γ(a + b)/Γ(a), and 1
2 ! = Γ(3

2) =
√
π

2 . The confluent hypergeometric
function, 1F1(·; ·; ·) has a hypergeometric series given by

1F1

(
−1

2
;
T −N

2
;−θ

2

)
=

∞∑
j=0

(
−1

2

)
j(

T−N
2

)
j

(
− θ

2

)j
j!

= 1+
1

T −N

(
θ

2

)
− 1

(T −N)(T −N + 2)

(
θ

2

)2

+· · ·

≈ 1 +
θ

2(T −N)
,

33See Park (1961) for the moments of a noncentral χ distribution.
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The final equation is based on the first order approximation, which is quite accurate because

θ =
β2
c0l
′
NMlN

σ2
ec

=
β2
c0T

(1 + âx)σ2
ec

=
β2
c0T

(1 + µ̂′xΣ̂−1
x µ̂x)σ2

ec

,

which is quite small since âx = µ̂′xΣ̂−1
x µ̂x is a fairly large value. Then, (71) can be rewritten

as:

E

(√
ˆ̂σ2
ωc

)
≈

√
2√

T −N
Γ
(
T−K+1

2

)
Γ
(
T−N

2

) σec

(
1 +

θ

2(T −N)

)
, (72)

where

σec

(
1 +

θ

2(T −N)

)
= σec +

T

2(T −N)

β2
c0

(1 + âx)σec
.

The first-order Taylor approximation of
√
a+ b at b = 0 is

√
a+ 1

2
√
a
b. Therefore,

σec +
T

2(T −N)

β2
c0

(1 + âx)σec
≈

√
σ2
ec +

T

T −N
β2
c0

1 + âx
. (73)

Consequently,

E

(√
ˆ̂σ2
ωc

)
≈

√
2√

T −N
Γ
(
T−K+1

2

)
Γ
(
T−N

2

) √σ2
ec +

T

T −N
β2
c0

1 + ax

Therefore, the unbiased estimator of

√
σ2
ec + T

T−N
β2
c0

1+ax
is

ˆ̂sωc =

√
T −N√

2

Γ
(
T−N

2

)
Γ
(
T−N+1

2

)√ˆ̂σ2
ωc =

√
T −N√

2

Γ
(
T−N

2

)
Γ
(
T−N+1

2

)
√
ω̂c
′ω̂c

T −N
. (74)

The problem of ˆ̂sωc is its expectation is not precisely equal to ‖ωc‖:

E(ˆ̂sωc) ≈

√
σ2
ec +

T

T −N
β2
c0

1 + âx
6=

√
σ2
ec +

β2
c0

1 + âx
=
√
E(ω2).

In (74),
√

T−N
2 Γ(T−N2 )/Γ(T−N+1

2 ) is the bias adjustment factor, which is precisely identical to

the bias adjustment in sec ,
√

T−N−1
2 Γ(T−N−1

2 )/Γ(T−N2 ) in Equation (60) after an adjustment

of the degrees of freedom. As such, we can conjecture that
√

T−N
2 Γ(T−N2 )/Γ(T−N−1

2 ) is a

bias adjustment factor which is required for adjusting the Jensen’s inequality associated with
square-root transformation. Following this intuition, we consider the following estimator of
‖ωc‖:

sωc =

√
T −N√

2

Γ
(
T−N

2

)
Γ
(
T−N+1

2

)√σ̂2
ωc =

√
T −N√

2

Γ
(
T−N

2

)
Γ
(
T−N+1

2

)√ ω̂c′ω̂c
T

+
N

T
σ̂2
e ,

i.e., we use σ̂2
ωc , the unbiased estimator of ‖ωc‖2 instead of ˆ̂σ2

ωc . The simulation analysis shows

that sωc , a pseudo-unbiased estimator, is, in fact, almost unbiased: E(sωc) =

√
σ2
ec +

β2
c0

1+ax
.

Table A.1. summarizes simulation results on the unbiasedness of sw.
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(ii) The pseudo-unbiased estimator of α∗
x

‖ωc‖ :

Given the distribution of α̂∗c , (34) in Proposition 6 and that of ˆ̂σ2
ωc in (68) and (69) in (i) of

this proposition, we consider the following statistic:

t′′nc(α̂
∗
c , ˆ̂σ

2
ωc) =

α̂∗c
σec√
T

√
ĉx+âxĉx−b̂2x

1+âx√
(T−N)ˆ̂σ2

ωc
σ2
ec

/
√
T−N

=
α̂∗c√

ˆ̂σ2
ωc√
T

√
ĉx+âxĉx−b̂2x

1+âx

∼ t′′nc (ν, δ, θ) , (75)

where

ν = T −N, δ =
α∗c

σec√
T

√
ĉx+âxĉx−b̂2x

1+âx

, θ =
β2
c0T

(1 + âx)σ2
ec

.

t′′nc(ν, δ, θ) denotes a doubly noncentral t distribution, which is isomorphic to the standard
central t distribution or the noncentral t distribution examined in Proposition 7-A. It is a
ratio of two random variables where its numerator is a normal variate with mean δ and unit
variance and its denominator is a square-root of an independent noncentral chi-square variate
with ν degrees of freedom and noncentrality parameter θ. Using the idemponency of M in
ω̂c, we can prove that the numerator is independent of the nominator in (75) in a similar way

shown in Lemma A.4. Its first moment is E(t′′nc(ν, δ, θ)) = δ
√

ν
2

Γ( ν−1
2 )

Γ( ν2 ) 1F1

(
1
2 ,

ν
2 ,−

θ
2

)
when

ν > 1.34 Therefore, the expected value of t-static in (75) is

E
[
t′′(α∗c , ˆ̂σ

2
ωc)
]

=
α∗c

σec√
T

√
ĉx+âxĉx−b̂2x

1+âx

√
T −N

2

Γ
(
T−N−1

2

)
Γ
(
T−N

2

) 1F1

(
1

2
,
T −N

2
,−θ

2

)
,

which yields

E

 α̂∗c√
ˆ̂σ2
ωc

 =
√
T −N

2

Γ
(
T−N−1

2

)
Γ
(
T−N

2

) [
α∗c
σec

1F1

(
1

2
,
T −N

2
,−θ

2

)]
.

From the first-order approximation of the confluent hypergeomtric function, we get

α∗c
σec

1F1

(
1

2
,
T −N

2
,−θ

2

)
≈ α∗c
σec

(
1− 1

T −N
· θ

2

)
=

α∗c

σec/
(

1− 1
T−N ·

θ
2

) .
The first-order Taylor expansion gives 1/(1−a) ≈ 1+a, and thus we get σec/

(
1− 1

T−N ·
θ
2

)
≈

σec

(
1 + 1

T−N
θ
2

)
≈
√
σ2
ec + T

T−N
β2
c0

1+ax
. The last approximation is a deja vu of (73). Conse-

quently,

E

 α̂∗c√
ˆ̂σ2
ωc

 =

√
T −N

2

Γ
(
T−N−1

2

)
Γ
(
T−N

2

)
 α∗c√

σ2
ec + T

T−N
β2
c0

1+ax

 .
34See Krishnan (1967) for details.
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Again, √
2

T −N
Γ
(
T−N

2

)
Γ
(
T−N−1

2

)E
 α̂∗c√

ˆ̂σ2
ωc

 =
α∗c√

σ2
ec + T

T−N
β2
c0

1+ax

,

which is different from α∗c/

√
σ2
ec +

β2
c0

1+ax
thereby being biased. As in (i) above, to correct for

such a bias, we consider the following the following pseudo-unbiased estimator:

̂( α∗c
‖ωc‖

)
=

√
2

T −N
Γ
(
T−N

2

)
Γ
(
T−N−1

2

) ( α̂∗c√
σ̂2
ωc

)
,

that is, we use σ̂2
ωc , the unbiased estimator of ‖ωc‖2 instead of ˆ̂σ2

ωc . A simulation result
tabulated in Table A.1. shows that, in fact, this estimator is almost unbiased.

(iii) The unbiased estimator of α∗x‖ωc‖:
Since α̂∗c and swc are independent, we simply make a product of the two estimators:

α̂∗c‖ωc‖ = α̂∗csωc .

This completes the proof. q.e.d.
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B MCMC Algorithm

B.1 State Space Form

The DCF model we estimate a state-space model with a Markov-regime switching parameters. In
the model the Markov process Mt evolves according to a transition probability matrix,

P =

(
p00 p01 = 1− p00

p10 = 0 p11 = 1

)
,

where the initial state is 0. Given the state at time t, the measurement equation in Equation (1)
can be expressed in a matrix form,

Yt = HMt × Ft + Et,

where Yt = (S′t, At, Dt, Bt)
′ is the vector of the observations, Ft = (Gt, L

S
t , LAt , LDt )′ is the vector

of the common factors, Et = (ESt , EAt , EDt , EBt )′ is the vector of the measurement errors, and

HMt =


γS,Mt λS,Mt 03×1 03×1

γA,Mt 0 δA,Mt 0
γD,Mt 0 0 κD,Mt

γB,Mt λB,Mt δB,Mt κB,Mt


is the matrix of the factor loadings. The transition equation is given in Equation (2). We follow the
approach of Kim and Kang (2019) and compute the likelihood using the Markov state process and
the measurement and transition equations. As all priors are conjugate, we compute and compare
the marginal likelihoods of the models with different number of changepoints using the method of
Chib (1995).

The quantities to be sampled are the model parameters

θ = (P, {γS,Mt=j , γA,Mt=j , γD,Mt=j , γB,Mt=j , λS,Mt=j , λB,Mt=j , δA,Mt=j , δB,Mt=j , κD,Mt=j , κB,Mt=j}1j=1,

σ2
G, σ

2
S , σ

2
A, σ

2
D, ΣMt , σ

2
B,Mt

),

common factors (F = {Ft}Tt=1), and regime process (M = {Mt}Tt=1). To identify the common factors
and states, we impose the following restrictions: for all Mt, δA,Mt , κD,Mt and the first elements of
γS,Mt and λS,Mt are equal to one.

The first step of the posterior sampling through a Markov chain Monte Carlo (MCMC) simulation
is to initialize M and θ. The first half of the sample period is set to be state 0, and the second half
is state 1. θ is initialized at their prior means. Then, we sequentially sample F, θ and M from
their full conditional distributions in each MCMC iteration. The following describes the details of
block-wise sampling.
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B.1.1 Sampling F

We denote the conditional variance-covariance of Yt by ΛMt =

[
ΣMt 05×1

01×5 σ2
B,Mt

]
. Then, using the

joint conditional normal distribution of (Ft, Yt),(
Ft
Yt

)
|Yt−1, θ,M ∼ N

(
0,

(
Ωt ΩtH

′
Mt

HMtΩt HMtΩtH
′
Mt

+ ΛMt

))
,

and the assumption that the factors are serially uncorrelated given the parameters and states, we
can derive the full conditional distribution of Ft as

Ft|Yt, θ,M ∼ N
(

ΩtH
′
Mt

(
HMtΩtH

′
Mt

+ ΛMt

)−1
Yt, Ωt − ΩtH

′
Mt

(
HMtΩtH

′
Mt

+ ΛMt

)−1
HMtΩt

)
.

Then, Ft is drawn from this distribution.

B.1.2 Sampling (σ2
G, σ

2
S, σ

2
A, σ

2
D)

As the common factors are serially uncorrelated and mutually independent, we can simply sample
each factor variance from inverse gamma distributions as the following:

σ2
G|F ∼ IG

(
α0 + T

2
,
δ0 +

∑T
t=1G

2
t

2

)
,

σ2
S |F ∼ IG

(
α0 + T

2
,
δ0 +

∑T
t=1 L

S2
t

2

)
,

σ2
A|F ∼ IG

(
α0 + T

2
,
δ0 +

∑T
t=1 L

A2
t

2

)
, and

σ2
D|F ∼ IG

(
α0 + T

2
,
δ0 +

∑T
t=1 L

D2
t

2

)
.

B.1.3 Sampling (γS,Mt , λS,Mt ,γA,Mt , δA,Mt ,γD,Mt , κD,Mt ,ΣMt)

Given the common factors and states, the parameters in the measurement equations of Qt =
(S′t, A

′
t, D

′
t)
′, given by

Qt|θ,F,Mt ∼ N(xt × βMt ,ΣMt) ,

can be updated in a seeming unrelated regression model framework, where

xt =

 Gt × I3 LSt × I3 03×1 03×1 03×1 03×1

01×3 01×3 Gt LAt 0 0
01×3 01×3 0 0 Gt LDt
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is a matrix of independent variables and

βMt =



γS,Mt

λS,Mt

γA,Mt

δA,Mt

γD,Mt

κD,Mt


is the vector of the factor loadings. Imposing the factor and state identification restrictions, βMt is
sampled from its full conditional distribution,

N

((
B−1

0 +
∑T

t=1
xtΣ

−1
Mt
x′t

)−1(∑T

t=1
xtΣ

−1
Mt
Qt

)
,

(
B−1

0 +
∑T

t=1
xtx
′
t

)−1
)
,

where B0 = Vβc × Idim(βMt )
is the the prior variance of βMt .

Given βMt and the conjugate prior of ΣMt , we can sample ΣMt=j from

IW

(
R0 +

∑T

t=1
I(Mt = j)× (Qt − xt × βMt)(Qt − xt × βMt)

′, v0 +
∑T

t=1
I(Mt = j)

)
for each state j(= 0 and 1), where I(·) is an indicator function.

B.1.4 Sampling (γB,Mt , λS,Mt , δA,Mt , κB,Mt ,σ
2
B,Mt

)

Next, the parameters in the Bitcoin equation among the measurement equations are sampled in a
linear regression framework.

Bt|θ,F,Mt ∼ N
(
Gt × γB,Mt + LSt × λS,Mt + LAt × δA,Mt + LDt × κB,Mt , σ

2
B,Mt

)
B.1.5 Sampling P

The transition probability p00 is updated by the beta distribution, Beta(a0 + n00, b0 + 1), given its
conjugate prior and M, where n00 is the number of the transitions from state 0 to state 0.

B.1.6 Sampling M = {Mt}Tt=1

The final stage is sampling the states. We use the forward and backward recursions of Carter and
Kohn (1994). Given the initial condition, Pr (M0 = 0|θ,F,Y0) = 1, the forward recursion is the
Hamilton filtering to compute the filtered probabilities,

Pr (Mt|θ,F,Yt) =
f (Yt|θ,F,Mt,Yt−1) Pr

(
Mt|θ,F,Yt−1

)
f
(
Yt|θ,F,Yt−1

)
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for all t = 1, 2, .., T , where f (Yt|θ,F,Mt,Yt−1) = N(Yt|HMt × Ft, ΛMt) is the conditional likeli-
hood,

Pr
(
Mt = j|θ,F,Yt−1

)
=
∑1

i=0
Pr(Mt|Mt−1 = i) Pr

(
Mt−1 = i|θ,F,Yt−1

)
is the predictive probability of state, and

f
(
Yt|θ,F,Yt−1

)
=
∑1

j=0
f (Yt|θ,F,Mt = j,Yt−1) Pr

(
Mt = j|θ,F,Yt−1

)
is the likelihood density at time t. For the backward recursion, we sample MT with the probability
Pr (MT |θ,F,YT ) . Then, using Mt+1 and the filtered probabilities, Mt for t = T − 1, T − 2, .., 1
can be sampled from the conditional probability,

Pr (Mt|θ,F,Yt,Mt+1) =
Pr(Mt+1|Mt) Pr(Mt|θ,Yt)∑1

i=0 Pr(Mt+1|Mt = i) Pr(Mt = i|θ,Yt)

in reverse order.

74



References

Acemoglu, Daren. 2021. “The Bitcoin Fountainhead.” Project Syndicate.

Adler, Michael, and Bernard Dumas. 1983. “Common Risk Factors in Cryptocurrency.” Jour-
nal of Finance, 38(3): 925–984.

Ahn, Dong-Hyun, Conrad S. Jennifer, and F. Robert Dittmar. 2009. “Basis Assets.” The
Review of Financial Studies, 22(12): 5133–5174.

Auer, Raphael, Marc Farag, Lewrick Ulf, Lovrenc Orazem, and Markus Zoss. 2022.
“Banking in the shadow of Bitcoin? The institutional adoption of cryptocurrencies.” BIS working
paper.

Barberis, Nicholas, and Andrei Shleifer. 2003. “Style Investing.” Journal of Financial Eco-
nomics, 68: 161–199.

Barberis, Nicholas, Andrei Shleifer, and Jeffrey Wurgler. 2005. “Comovement.” Journal
of Financial Economics, 75(2): 283–317.

Bekaert, G., and Michael S. Urias. 1996. “Diversification, Integration and Emerging Market
Closed-End Funds.” Journal of Finance, 51(3): 835–869.

Bianchi, Daniele, and Mykola Babiak. 2021. “A Factor Moidel for Cryptocurrency Returns.”
Available at SSRN 3935934.

Borri, Nicola. 2019. “Conditional tail-risk in cryptocurrency markets.” Journal of Empirical
Finance, 50: 1–19.

Borri, Nicola, and Paolo Santucci de Magistris. 2021. “Crypto Premium, Higher-Order
Moments and Tail Risk.” Available at SSRN 3889169.

Carter, C., and R. Kohn. 1994. “On Gibbs sampling for state space models.” Biometrika,
81: 541–53.

Chen, Andrew Y., and Tom Zimmermann. 2022. “Open Source Cross-Sectional Asset Pric-
ing.” Critical Finance Review, 27(2): 207–264.

Chen, Zhiwu, and Peter J. Knez. 1995. “Measurement of Market Integration and Arbitrage.”
Review of Financial Studies, 8(2): 287–325.

Chib, S. 1995. “Marginal likelihood from the Gibbs output.” Journal of the American Statistical
Association, 90: 1313–1321.

Cho, D. Chinhyung., Chel S. Eun, and Lemma W. Senbet. 1986. “International Asset
Pricing Theory: An Empirical Investigation.” Journal of Finance, 41(2): 313–329.

Cousineau, Denis, and Louis Laurencelle. 2011. “Non-central t distribution and the power of
the t test: A rejoinder.” Tutorials in Quantitative Methods for Psychology, 7(1): 1–4.

Darwin, Charles. 1875. The Variation of Animals and Plants under Domestication, 2nd Ed.
London: John Maurray.

75



DeSantis, George. 1995. “Volatility bounds for stochastic discount factors: Tests and implications
from international financial markets.” unpublished manuscript.

Driscoll, Carlos A., David W. Macdonald, and Stephen J. O’Brien. 2009. “From Wild
Animals to Domestic Pets, an Evolutionary View of Domestication.” Proceedings of the National
Academy of Science, 106: 9971–9978.

Fama, Eugene F., and Kenneth R. French. 2015. “A Five-Factor Asset Pricing Model.”
Journal of Financial Economics, 116: 1–22.

Fidelity. 2021. “The institutional investor digital assets study.”

Gooch, W. Jan. 2010. “Encyclopedic Dictionary of Polymers, 2nd Ed.” Springer, 1.

Greene, H. William. 1990. Econometric Analysis. Macmillan Publishing Company.

Hansen, P. Lars, and Ravi Jagannathan. 1991. “Implications of Security Market Data for
Models of Dynamic Economies.” Journal of Political Economy, 99(2): 225–262.

Hansen, P. Lars, and Ravi Jagannathan. 1997. “Assessing Specification Errors in Stochastic
Discount Factor Models.” Journal of Finance, 52(2): 557–590.

Harrison, Michael J., and David M. Kreps. 1979. “Martingales and Arbitrage in Multiperiod
Securities Markets.” Journal of Economic Theory, 20: 381–408.

Hou, Kewei, Chen Xu, and Lu Zhang. 2015. “Digesting Anomalies: An Investment Approach.”
Review of Financial Studies, 28: 650–705.

Hou, Kewei, Chen Xu, and Lu Zhang. 2020. “Replicating Anomalies.” Review of Financial
Studies, 33: 2019–2133.

Hou, Kewei, Haitao Mo, Chen Xu, and Lu Zhang. 2021. “An Augmented q-factor Model
with Expected Growth.” Review of Finance, 25(1): 1–41.

Huberman, Gur, and Shmuel Kandel. 1987. “Mean-Variance Spanning.” Journal of Finance,
42: 873–888.

Jagannathan, Ravi, and Zhenyu Wang. 1996. “The Conditional CAPM and the Cross-Section
of Expected Returns.” Journal of Finance, 51(1): 3–53.

Kim, Young Min, and Kyu Ho Kang. 2019. “Likelihood Inference for Dynamic Linear Models
with Markov Switching Parameters: On the Efficiency of the Kim Filter.” Econometric Reviews,
38(10): 1109–1130.

Korajczyk, Robert. 1996. “A Measure of Stock Market Integration for Developed and Emerging
Markets.” The World Bank Economic Review, 10(2): 267–289.

Korajczyk, Robert, and Claude J. Viallet. 1989. “An Empirical Investigationl of International
Asset Pricing.” Review of Financial Studies, 2(4): 353–385.

Krishnan, Marakatha. 1967. “The Moments of a Doubly Noncentral t-Distribution.” Journal of
the American Statistical Association, 32: 278–287.

Lettau, Martin, and Markus Pelger. 2020. “Factors That Fit the Time Series and Cross-Section
of Stock Returns.” The Review of Financial Studies, 33(5): 2274–2325.

76



Lewellen, Jonathan, Stefan Nagel, and Jay Shanken. 2010. “A skeptical appraisal of asset
pricing tests.” Journal of Financial Economics, 96(2): 175–194.

Liu, Yukun, Aleh Tsyvinski, and Xi Wu. 2022. “Common Risk Factors in Cryptocurrency.”
Journal of Finance, 77(2): 1133–1177.

Liu, Yukun, and Aleh Tsyvinski. 2021. “Risks and Returns of cryptocurrency.” The Review of
Financial Studies, 34: 2689–2727.

OECD. 2022. “Institutionalisation of crypto-assets and DeFi–TradFi interconnectedness.”

Omori, Y., S. Chib, N. Shephard, and J. Nakajima. 2007. “Stochastic volatility with lever-
age: fast and efficient likelihood inference.” Journal of Econometrics, 140: 425–449.

Park, J.H. 1961. “Moments of the Generalized Rayleigh Distribution.” Quarterly of Applied Math-
ematics, 19(1): 45–49.

Price, Edward O. 1984. “Behavioral Aspects of Animal Domestication.” Quarterly Review of
Biology, 59: 1–32.

PwC. 2022. “4th Annual Global Crypto Hedge Fund Report 2022.” PwC Publishing.

Roubini, Nouriel. 2021. “Bitcoin is not a hedge against tail risk.” Financial Times.

Street, State. 2021. “Digital assets survey.”
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Table 1

Variance decomposition of Bitcoin return

Break Date Gt LSt LAt LDt LBt total

Bitcoin
February 21,

2020

(a) Before the break

0.010 0.002 0.026 0.007 0.956*** 1.000
(0.016) (0.003) (0.037) (0.012) (0.052)

(b) After the break

0.020 0.627*** 0.044 0.061 0.249** 1.000
(0.026) (0.128) (0.054) (0.048) (0.122)

MVDA
Crypto Market

Index

February 21,
2020

(a) Before the break

0.004 0.001 0.015 0.006 0.973*** 1.000
(0.008) (0.002) (0.018) (0.010) (0.027)

(b) After the break

0.046 0.219** 0.326** 0.116 0.294* 1.000
(0.055) (0.096) (0.186) (0.080) (0.192)

Note: This table presents the posterior means of the variance decomposition before and after the break. The
posterior standard errors are in parentheses. The three asterisks, *, ** and ***, correspond to statistical
significance with p-value less than 10%, 5%, and 1% respectively.
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Table 2

ADL-SV model: Overnight Effect

(a) S&P500

without FTSE with FTSE
Before the break After the break Before the break After the break
mean S.D. mean S.D. mean S.D. mean S.D.

µr 0.031 0.007 0.031 0.007 0.032 0.005 0.032 0.005
SUSt−1 -0.007 0.011 -0.007 0.011 -0.061 0.009 -0.061 0.009
RBt -0.001 0.002 0.020 0.005 0.000 0.002 0.011 0.003
SUKt 0.230 0.011 0.230 0.011
µh -0.070 0.022 -0.070 0.022 -0.332 0.097 -0.332 0.097
ht−1 0.970 0.009 0.970 0.009 0.880 0.034 0.880 0.034
logRV B

t 0.034 0.022 0.014 0.033 0.144 0.045 -0.031 0.051
logRV UK

t 0.350 0.105 0.350 0.105
σ2 0.079 0.019 0.079 0.019 0.158 0.045 0.158 0.045

(b) Nasdaq

without FTSE with FTSE
Before the break After the break before the break After the break
mean S.D. mean S.D. mean S.D. mean S.D.

µr 0.070 0.012 0.070 0.012 0.060 0.010 0.060 0.010
SUSt−1 0.030 0.018 0.030 0.018 -0.067 0.015 -0.067 0.015
RBt -0.001 0.002 0.045 0.008 0.000 0.003 0.032 0.007
SUKt 0.459 0.017 0.459 0.017
µh -0.076 0.022 -0.076 0.022 -0.562 0.116 -0.562 0.116
ht−1 0.696 0.027 0.696 0.027 0.667 0.066 0.667 0.066
logRV B

t 0.039 0.028 0.038 0.046 0.275 0.066 0.086 0.084
logRV UK

t 0.859 0.179 0.859 0.179
σ2 0.144 0.034 0.144 0.034 0.320 0.064 0.320 0.064

Note: This table presents the posterior summary of the ADL-SV model on the overnight returns on the
U.S. stock indices. mean and S.D. are the posterior mean and standard deviation, respectively. Bold font
indicates that the 95 percent credibility interval does not contain zero.
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Table 3

ADL-SV model: Weekend Effect

(a) S&P500

without FTSE with FTSE
Before the break After the break Before the break After the break
mean S.D. mean S.D. mean S.D. mean S.D.

µr 0.018 0.018 0.018 0.018 0.024 0.012 0.024 0.012
SUSt−1 -0.009 0.029 -0.009 0.029 -0.052 0.021 -0.052 0.021
RBt -0.003 0.004 0.020 0.008 0.001 0.003 0.010 0.005
SUKt 0.282 0.023 0.282 0.023
µh -0.284 0.122 -0.284 0.122 -0.772 0.191 -0.772 0.191
ht−1 0.861 0.054 0.861 0.054 0.703 0.070 0.703 0.070
logRV B

t 0.214 0.136 0.061 0.181 0.520 0.167 -0.052 0.209
logRV UK

t 0.780 0.217 0.780 0.217
σ2 0.417 0.172 0.417 0.172 0.473 0.165 0.473 0.165

(b) Nasdaq

without FTSE with FTSE
Before the break After the break before the break After the break
mean S.D. mean S.D. mean S.D. mean S.D.

µr 0.049 0.031 0.049 0.031 0.040 0.023 0.040 0.023
SUSt−1 0.062 0.044 0.062 0.044 -0.020 0.033 -0.020 0.033
RBt -0.005 0.006 0.057 0.015 0.000 0.005 0.035 0.011
SUKt 0.531 0.037 0.531 0.037
µh -0.208 0.094 -0.208 0.094 -0.651 0.164 -0.651 0.164
ht−1 0.786 0.079 0.786 0.079 0.576 0.097 0.576 0.097
logRV B

t 0.204 0.144 0.119 0.199 0.428 0.177 -0.019 0.227
logRV UK

t 0.937 0.246 0.937 0.246
σ2 0.482 0.206 0.482 0.206 0.484 0.181 0.484 0.181

Note: This table presents the posterior summary of the ADL-SV model on the weekend/holiday returns on
the U.S. stock indices. mean and S.D. are the posterior mean and standard deviation, respectively. Bold
font indicates that the 95 percent credibility interval does not contain zero.
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Table 4

Summary Statistics of the Data

# of
Assets

µ σ

Mean Median Minimum Maximum Mean Median Min Max

Pre-Break Period
(Jaunary 2017

-Feburary 2020)

(T=82)

Basis
Assets

Stock Porfolios 25 1.0039 1.0037 0.9998 1.0086 0.0324 0.0330 0.0229 0.0400
Risk-Free 1 1.0009 1.0009 1.0001 1.0014

Individual
Assets

Stocks 2,649 1.0040 1.0041 0.9092 1.1126 0.0884 0.0672 0.0147 1.6010
Cryptoassets 43 1.0796 1.0722 1.0230 1.1889 0.4420 0.3663 0.1814 1.0111

Post-Break Period
(March 2020

-March 2022)

(T=52)

Basis
Assets

Stock Porfolios 25 1.0074 1.0068 1.0044 1.0179 0.0585 0.0589 0.0407 0.0788
Risk-Free 1 1.0001 1.0000 1.0000 1.0008

Individual
Assets

Stocks 2,649 1.0107 1.0074 0.9482 1.3390 0.1217 0.0944 0.0328 2.3944
Cryptoassets 415 1.0664 1.0601 0.9696 1.4418 0.3887 0.3367 0.0290 1.4888

Note: This table summarizes the descriptive statistics of basis assets, which comprises the Fama-French size and book-to-market sorted portfolios and
the locally risk-free asset. It also provides the summary statistics of all individual assets available in CRSP and individual cryptoassets with market
capitalization greater than 1 million US dollar. µ and σ refer to the mean and standard deviation of biweekly returns on the relevant variable. The
returns or payoffs are measured in gross terms. We split the whole time-series into the pre-break period and the post-break period on the basis of the
structural break date, February 24, 2020, which is empirically identified in Section 3.
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Table 5

Estimation Results of Regressions Between |α∗c | and Idiosyncratic Risks

(a) Regressand=|α̂∗c | and Regressor=sec

(
= ‖̂ec‖

)

Before Break

Individual
Stocks 2,649

Estimate 0.0057 0.0948
0.4170

z-value 0.5016 6.0538∗∗∗

Individual
Cryptoassets 43

Estimate -0.0084 0.1791
0.5669

z-value -0.3569 2.8867∗∗∗

After Break

Individual
Stocks 2,649

Estimate 0.0019 0.1096
0.4111

z-value 2.4240∗ 11.4644∗∗∗

Individual
Cryptoassets 415

Estimate 0.0095 0.1795
0.2969

z-value 1.1394 5.5080∗∗∗

(b) Regressand=|α̂∗c | and Regressor=sωc

(
= ‖̂ωc‖

)
# of Assets Intercept Slope adjusted R2

Before Break

Individual
Stocks 2,649

Estimate 0.0006 0.0945
0.4152

z-value 0.5190 5.9172∗∗∗

Individual
Cryptoassets 43

Estimate -0.0106 0.1803
0.5747

z-value -0.5599 2.9686∗∗∗

After Break

Individual
Stocks 2,649

Estimate 0.0019 0.1089
0.4108

z-value 2.4806∗∗ 11.4934∗∗∗

Individual
Cryptoassets 415

Estimate 0.0096 0.1786
0.2971

z-value 1.1631 6.6451∗∗∗

Note: This table reports the regression results between |α̂∗c | and ‖̂ec‖ in Panel (a) and those between |α̂∗c | and

‖̂ωc‖ in Panel (b). We use the Generalized Method of Moment (GMM) with the Newey-West adjustment
for serial correlations with lag 4.
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Table 6-A

Estimation Results of Domestication Measures Based on ‖ec‖: Before the Break

Individual
Stocks

Statistics Mean Median S.D.
95% Confidence 97.5% Confidence 99% Confidence

lower
end

upper
end

lower
end

upper
end

lower
end

upper
end

sec = ‖̂ec‖ 0.0782 0.0567 0.0763 0.1939 0.2396 0.3244(̂
α∗c
‖ec‖

)
0.0220 0.0259 0.1245 -0.2343 0.2544 -0.2681 0.2888 -0.3262 0.3513

α̂∗c 0.0007 0.0013 0.0138 -0.0282 0.0245 -0.0376 0.0331 -0.0508 0.0540

α̂∗c‖ec‖ 0.0002 0.0000 0.0062 -0.0051 0.0038 -0.0074 0.0069 -0.0110 0.0151

Crypto-
Assets

Statistics Mean Median S.D.
95% Confidence 97.5% Confidence 99% Confidence

<lower
end Inside

>upper
end

<lower
end Inside

>upper
end

<lower
end Inside

>upper
end

sec = ‖̂ec‖ 0.4428 0.3739 0.2017
1 42 2 41 11 32

(2.33%) (97.67%) (4.65%) (95.35%) (25.58%) (74.42%)(̂
α∗c
‖ec‖

)
0.1559 0.1546 0.0600

0 41 2 0 43 0 0 43 0
(0.00%) (95.43%) (4.65%) (0.00%) (100.00%) (0.00%) (0.00%) (100.00%) (0.00%)

α̂∗c 0.0709 0.0632 0.0476
0 3 40 0 9 34 0 14 29

(0.00%) (6.97%) (93.02%) (0.00%) (20.93%) (79.06%) (0.00%) (32.56%) (67.44%)

α̂∗c‖ec‖ 0.0385 0.0232 0.0486
0 1 42 0 4 39 0 11 32

(0.00%) (2.32%) (97.67%) (0.00%) (9.30%) (90.69%) (0.00%) (25.58%) (74.41%)

Note: This table presents the estimation results of domestication measures associated with ‖ec‖ before the structural break. The upper part of it
reports the cross-sectional distributions of the estimate of the idiosyncratic risk (sec) along with the estimates of the candidate domestication measures

associated with ec (α̂∗c ,
(̂
α∗c
‖ec‖

)
and α̂∗c‖ec‖) of the individual stocks. For each statistic, it report its mean, median and standard deivtation (S.D.)

and also the lower and upper-end values of 95%, 97.5% and 99% confidence intervals. Only the upper end value of sec = ‖̂ec‖ is reported since it
is always positive. These lower and upper end values of each statistic are used as critical values in determining whether a particular cryptoasset is
domesticated. The results are presented in the lower part of the table, which reports the number and the percentage of cryptos belonging to each cell
(<lower end, inside, >upper end).
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Table 6-B

Estimation Results of Domestication Measures Based on ‖ec‖: After the Break

Individual
Stocks

Statistics Mean Median S.D.
95% Confidence 97.5% Confidence 99% Confidence

lower
end

upper
end

lower
end

upper
end

lower
end

upper
end

sec = ‖̂ec‖ 0.0931 0.0680 0.0909 0.2164 0.2899 0.4328(̂
α∗c
‖ec‖

)
0.0153 0.0152 0.1662 -0.3035 0.3389 -0.3624 0.3892 -0.4240 0.4390

α̂∗c 0.0020 0.0010 0.0196 -0.0348 0.0454 -0.0424 0.0600 -0.0553 0.0818

α̂∗c‖ec‖ 0.0006 0.0001 0.0106 -0.0054 0.0087 -0.0072 0.0177 -0.0103 0.0306

Crypto-
Assets

Statistics Mean Median S.D.
95% Confidence 97.5% Confidence 99% Confidence

<lower
end Inside

>upper
end

<lower
end Inside

>upper
end

<lower
end Inside

>upper
end

sec = ‖̂ec‖ 0.3510 0.2965 0.1885
76 339 191 224 333 82

(18.31%) (84.69%) (46.02%) (54.98%) (80.24%) (19.76%)(̂
α∗c
‖ec‖

)
0.1880 0.1981 0.1530

1 348 66 0 376 39 0 394 21
(0.24%) (83.86%) (15.90%) (0.00%) (90.60%) (9.39%) (0.00%) (94.93%) (5.06%)

α̂∗c 0.0686 0.0572 0.0663
7 151 257 5 211 199 2 278 135

(1.69%) (36.39%) (61.93%) (1.20%) (50.84%) (47.95%) (0.48%) (66.99%) (32.53%)

α̂∗c‖ec‖ 0.0306 0.0167 0.0465
14 118 283 11 203 201 9 285 121

(3.37%) (28.43%) (48.91%) (2.65%) (48.91%) (48.43%) (2.16%) (68.67%) (29.15%)

Note: This table presents the estimation results of domestication measures associated with ‖ec‖ after the structural break. The upper part of it
reports the cross-sectional distributions of the estimate of the idiosyncratic risk (sec) along with the estimates of the candidate domestication measures

associated with ec (α̂∗c ,
(̂
α∗c
‖ec‖

)
and α̂∗c‖ec‖) of the individual stocks. For each statistic, it reports its mean, median and standard deviation (S.D.)

and also the lower and upper-end values of 95%, 97.5% and 99% confidence intervals. Only the upper end value of sec = ‖̂ec‖ is reported since it
is always positive. These lower and upper end values of each statistic are used as critical values in determining whether a particular cryptoasset is
domesticated. The results are presented in the lower part of the table, which reports the number and the percentage of cryptos belonging to each cell
(<lower end, inside, >upper end).
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Table 7-A

Estimation Results of Domestication Measures Based on ‖ωc‖: Before the Break

Individual
Stocks

Statistics Mean Median S.D.
95% Confidence 97.5% Confidence 99% Confidence

lower
end

upper
end

lower
end

upper
end

lower
end

upper
end

swc = ‖̂ωc‖ 0.0782 0.0567 0.0764 0.1937 0.2396 0.3234(̂
α∗c
‖ωc‖

)
0.0220 0.0258 0.1246 -0.2349 0.2557 -0.2677 0.2886 -0.3281 0.3524

α̂∗c 0.0007 0.0013 0.0138 -0.0282 0.0245 -0.0376 0.0331 -0.0508 0.0540

α̂∗c‖ωc‖ 0.0002 0.0000 0.0062 -0.0050 0.0038 -0.0074 0.0069 -0.0110 0.0151

Crypto-
Assets

Statistics Mean Median S.D.
95% Confidence 97.5% Confidence 99% Confidence

<lower
end Inside

>upper
end

<lower
end Inside

>upper
end

<lower
end Inside

>upper
end

swc = ‖̂ωc‖ 0.4521 0.3844 0.2017
1 42 1 42 9 34

(2.33%) (97.67%) (2.33%) (96.67%) (20.93%) (79.07%)(̂
α∗c
‖ωc‖

)
0.1522 0.1544 0.0584

0 42 1 0 43 0 0 43 0
(0.00%) (97.67%) (2.33%) (0.00%) (100.00%) (0.00%) (0.00%) (100.00%) (0.00%)

α̂∗c 0.0759 0.0632 0.0476
0 3 40 0 9 34 0 14 29

(0.00%) (6.98%) (93.02%) (0.00%) (20.93%) (79.07%) (0.00%) (32.56%) (67.44%)

α̂∗c‖ωc‖ 0.0392 0.0236 0.0491
0 1 42 0 4 39 0 11 32

(0.00%) (2.32%) (97.67%) (0.00%) (9.30%) (90.70%) (0.00%) (25.58%) (74.42%)

Note: This table presents the estimation results of domestication measures associated with ‖ωc‖ before the structural break. The upper part of
it reports the cross-sectional distributions of the estimate of the idiosyncratic risk (sωc

) along with the estimates of the candidate domestication

measures associated with ωc (α̂∗c ,
(̂

α∗c
‖ωc‖

)
and α̂∗c‖ωc‖) of the individual stocks. For each statistic, it reports its mean, median and standard deviation

(S.D.) and also the lower and upper-end values of 95%, 97.5% and 99% confidence intervals. Only the upper end value of sec = ‖̂ωc‖ is reported since
it is always positive. These lower and upper end values of each statistic are used as critical values in determining whether a particular cryptoasset is
domesticated. The results are presented in the lower part of the table, which reports the number and the percentage of cryptos belonging to each cell
(<lower end, inside, >upper end). One thing to notice is that all the results associated with α̂∗c herein is exactly identical to those in Table 6-A.
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Table 7-B

Estimation Results of Domestication Measures Based on ‖ωc‖: After the Break

Individual
Stocks

Statistics Mean Median S.D.
95% Confidence 97.5% Confidence 99% Confidence

lower
end

upper
end

lower
end

upper
end

lower
end

upper
end

sωc = ‖̂ωc‖ 0.0934 0.0684 0.0914 0.2192 0.2885 0.4329(̂
α∗c
‖ωc‖

)
0.0153 0.0149 0.1657 -0.3030 0.3373 -0.3580 0.3897 -0.4263 0.4408

α̂∗c 0.0020 0.0010 0.0196 -0.0348 0.0454 -0.0424 0.0600 -0.0553 0.0818

α̂∗c‖ωc‖ 0.0006 0.0001 0.0108 -0.0054 0.0089 -0.0072 0.0176 -0.0103 0.0305

Crypto-
Assets

Statistics Mean Median S.D.
95% Confidence 97.5% Confidence 99% Confidence

<lower
end Inside

>upper
end

<lower
end Inside

>upper
end

<lower
end Inside

>upper
end

sωc = ‖̂ωc‖ 0.3520 0.2978 0.1895
80 340 190 225 332 83

(19.28%) (80.72%) (45.78%) (54.22%) (80.00%) (20.00%)(̂
α∗c
‖ωc‖

)
0.1873 0.1957 0.1523

1 352 62 0 377 38 0 395 20
(0.24%) (84.82%) (14.94%) (0.00%) (90.84%) (9.16%) (0.00%) (95.18%) (4.82%)

α̂∗c 0.0686 0.0572 0.0663
7 151 257 5 211 199 2 278 135

(1.69%) (36.39%) (61.93%) (1.20%) (50.84%) (47.95%) (0.48%) (66.99%) (32.53%)

α̂∗c‖ωc‖ 0.0307 0.0166 0.0466
14 121 280 11 202 202 9 285 121

(3.37%) (29.16%) (67.47%) (2.65%) (48.67%) (48.67%) (2.17%) (68.67%) (29.16%)

Note: This table presents the estimation results of domestication measures associated with ‖ωc‖ after the structural break. The upper part of it
reports the cross-sectional distributions of the estimate of the idiosyncratic risk (sωc

) along with the estimates of the candidate domestication measures

associated with ωc (α̂∗c ,
(̂

α∗c
‖ωc‖

)
and α̂∗c‖ωc‖) of the individual stocks. For each statistic, it reports its mean, median and standard deviation (S.D.)

and also the lower and upper-end values of 95%, 97.5% and 99% confidence intervals. Only the upper end value of sec = ‖̂ωc‖ is reported since it
is always positive. These lower and upper end values of each statistic are used as critical values in determining whether a particular cryptoasset is
domesticated. The results are presented in the lower part of the table, which reports the number and the percentage of cryptos belonging to each cell
(<lower end, inside, >upper end). One thing to notice is that all the results associated with α̂∗c herein is exactly identical to those in Table 6-B.
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Table 8

Correlations Between the GMN-SDF of the Stock Basis Assets and the SDFs of Cryptoassets

# of
Clusters

Confidence
Level

α̂∗c

(̂
α∗c
‖ec‖

)
α̂∗c‖ec‖

(̂
α∗c
‖ωc‖

)
α̂∗c‖ωc‖

m∗dc|µ∗m
m∗nc|µ∗m

m∗dc m∗nc m∗dc|µ∗m
m∗nc|µ∗m

m∗dc|µ∗m
m∗nc|µ∗m

m∗dc m∗nc m∗dc m∗nc

10

95.0% 0.5433 -0.0101 0.4783 0.0215 0.2018 -0.1517 0.4599 0.0926 0.2094 0.0750 0.3840 0.0420

97.5% 0.4769 -0.0552 0.3676 -0.0202 0.1605 -0.2599 0.3798 0.1402 0.1124 -0.0065 0.3580 0.1658

99.0% 0.3735 -0.0595 0.4076 0.1381 0.1136 -0.2770 0.3253 0.0153 0.0654 0.1787 0.3200 -0.1456

11

95.0% 0.5723 -0.0094 0.5083 0.0214 0.2028 -0.2064 0.4835 0.0799 0.2057 -0.0530 0.4460 0.0303

97.5% 0.4781 -0.0544 0.3678 -0.0346 0.1616 -0.2638 0.3710 0.1474 0.1105 0.0011 0.3192 0.1663

99.0% 0.3692 -0.0562 0.4002 0.1503 0.1465 -0.2813 0.3033 0.0156 0.0540 0.1777 0.3396 -0.1472

12

95.0% 0.5818 -0.0005 0.5459 0.0254 0.2154 -0.2115 0.4813 0.0780 0.2165 -0.0460 0.4760 0.0307

97.5% 0.4810 -0.0568 0.4072 -0.0399 0.1984 -0.2615 0.3887 0.1486 0.0993 0.0026 0.3150 0.1667

99.0% 0.3744 -0.0577 0.4219 0.1441 0.0890 -0.2729 0.3008 0.0133 0.0044 0.0549 0.3462 -0.1527

13

95.0% 0.5882 -0.0468 0.5519 0.0164 0.2531 -0.3384 0.4810 0.0764 0.2420 -0.3218 0.4833 0.0374

97.5% 0.4749 -0.0721 0.4035 -0.0289 0.1983 -0.2268 0.3890 0.1544 0.0989 0.0353 0.3260 0.1793

99.0% 0.3702 -0.0540 0.4227 0.1463 0.1184 -0.2724 0.2876 0.0017 0.0217 0.0374 0.3564 0.0016

14

95.0% 0.5666 -0.0461 0.5277 0.0193 0.2545 -0.3821 0.4893 0.0637 0.2425 -0.3512 0.4875 0.0126

97.5% 0.4550 -0.0508 0.4363 0.0431 0.1885 -0.2318 0.3571 0.1479 0.0777 0.0378 0.3324 0.1576

99.0% 0.3826 -0.0285 0.4337 0.1788 0.1229 -0.3012 0.2250 -0.0113 0.0220 0.0072 0.2327 0.0311

15

95.0% 0.5632 0.0000 0.5273 0.0270 0.2441 -0.4043 0.4689 0.0487 0.2537 -0.3906 0.4628 -0.0029

97.5% 0.4921 -0.0522 0.4490 0.0436 0.1829 -0.2159 0.3560 0.1267 0.0629 -0.0878 0.3375 0.1434

99.0% 0.3844 -0.0004 0.4369 0.1883 0.1250 -0.3032 0.2275 -0.0091 0.0220 0.0004 0.2328 0.0117

Note: This table reports the correlation coefficients between the GMN-SDF of the stock basis assets augmented by the locally risk-free asset (m∗x)
and the SDF of the cryptoassets designated as domesticated assets (and non-domesticated assets) by each domestication measure. m∗dc|µ∗m

(m∗nc|µ∗m
)

is the minimum-norm SDF retrieved from the domesticated cryptos under the restriction that it has the mean same to that of the basis assets, i.e.,
E(m∗dc|µ∗m

) = µ∗m. m∗nc|µ∗m
is the minimum-norm SDF retrieved from the non-domesticated cryptos under the same restriction. In contrast, m∗dc (m∗nc)

is the GMN-SDF retrieved from the domesticated (non-domesticated) cryptos without any restriction on its mean.
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Table 9

Bootstrapped Distribution of the Correlations Between the GMN-SDF of Basis Assets and the SDFs of Cryptoassets

Domes.
Measure

SDFs
of Cryptos

Confidence
Level

Domesticated Cryptoassets Non-domesticated Cryptoassets

Mean Median S.D. Min. Max. p-val. Mean Median S.D. Min. Max. p-val.

α̂c
∗ m∗dc|µ∗m

m∗nc|µ∗m

95.0% 0.440 0.445 0.095 -0.108 0.778 0.000 0.042 0.042 0.108 -0.422 0.483 0.347

97.5% 0.347 0.352 0.107 -0.167 0.776 0.002 0.037 0.038 0.104 -0.458 0.445 0.359

99.0% 0.268 0.272 0.111 -0.228 0.651 0.011 -0.014 -0.014 0.102 -0.455 0.443 0.555

α̂c
∗ m∗dc m∗nc

95.0% 0.426 0.431 0.097 -0.110 0.784 0.000 0.070 0.071 0.125 -0.458 0.557 0.289

97.5% 0.340 0.345 0.110 -0.195 0.749 0.002 0.079 0.080 0.125 -0.467 0.557 0.264

99.0% 0.271 0.275 0.118 -0.257 0.689 0.015 0.075 0.076 0.127 -0.495 0.611 0.277

α̂∗c
‖ec‖

m∗dc|µ∗m
m∗nc|µ∗m

95.0% 0.177 0.179 0.110 -0.319 0.579 0.058 -0.167 -0.167 0.108 -0.601 0.317 0.938

97.5% 0.126 0.127 0.112 -0.344 0.550 0.132 -0.106 -0.108 0.066 -0.380 0.196 0.943

99.0% 0.099 0.100 0.113 -0.374 0.538 0.190 -0.160 n.a. n.a. n.a. n.a. n.a.

α̂∗c‖ec‖ m∗dc|µ∗m
m∗nc|µ∗m

95.0% 0.385 0.389 0.102 -0.197 0.739 0.000 0.061 0.061 0.107 -0.382 0.489 0.286

97.5% 0.272 0.275 0.110 -0.203 0.656 0.010 0.064 0.065 0.103 -0.360 0.479 0.267

99.0% 0.212 0.215 0.113 -0.279 0.606 0.034 0.035 0.036 0.099 -0.449 0.460 0.361

α̂∗c
‖ωc‖

m∗dc m∗nc

95.0% 0.175 0.176 0.110 -0.330 0.596 0.060 -0.204 -0.205 0.104 -0.591 0.250 0.973

97.5% 0.124 0.125 0.112 -0.455 0.578 0.135 -0.083 -0.084 0.056 -0.316 0.152 0.928

99.0% 0.099 0.100 0.113 -0.441 0.557 0.191 -0.098 n.a. n.a. n.a. n.a. n.a.

α̂∗c‖ωc‖ m∗dc m∗nc

95.0% 0.382 0.386 0.101 -0.158 0.723 0.000 0.060 0.061 0.107 -0.420 0.477 0.288

97.5% 0.272 0.276 0.110 -0.257 0.661 0.010 0.063 0.064 0.102 -0.387 0.475 0.268

99.0% 0.212 0.215 0.112 -0.371 0.653 0.034 0.035 0.036 0.099 -0.400 0.401 0.359

Note: This table presents the bootstrapped sampling distribution of correlation between the GMN-SDF retrieved from the stock basis assets augmented
by the locally risk-free asset and the relevant SDF retrieved from the cryptos that are designated as domesticated (non-domesticated) assets by each

domestication measure. S.D. stands for standard deviation and p-value refers to the p-value of zero correlation. With 99% confidence level,
α̂∗c
‖ωc‖

(
α̂∗c
‖ωc‖ ) designate only 21 (20) cryptoassets as non-domesticated assets [see Table 6-B (Table 7-B)]. This number is below 25, the number of crypto

basis assets pre-specified in bootstrapping. As such, we report the result with when using all of the 21 (22) individual cryptos as crypto basis assets
in column, ‘Mean,’ and write down n.a. (not available) in the rest of columns.
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Table 10-A

Relation Between the SDF of Domesticated Cryptoassets and the Fama-French 5 Factors/Crypto-Market Factors

Factors
95% 97.5% 99%

(1) (2) (3) (4) (5) (6) (7) (8) (9)

CMOM −0.047 0.277 0.779 1.083∗ 0.783 1.062∗∗

(0.915) (0.585) (0.863) (0.571) (0.650) (0.504)

CSMB −0.670 −0.641 −0.766∗∗ −0.718∗ −1.339∗∗∗ −1.287∗∗

(0.450) (0.538) (0.340) (0.426) (0.411) (0.600)

CMKT −0.595 −0.261 −0.589 0.032 −0.927 −0.775
(0.665) (0.610) (0.716) (0.614) (0.738) (0.585)

MRMF −5.583∗∗∗ −5.216∗∗∗ −4.599∗∗ −4.793∗∗∗ −4.734∗∗ −3.831∗∗

(1.635) (1.651) (2.019) (1.680) (2.267) (1.521)

SMB −1.356 −1.633 −3.082 −3.619 0.649 0.228
(2.363) (2.661) (2.362) (2.576) (3.263) (3.431)

HML 1.928 2.404 0.460 0.640 −0.073 1.153
(1.563) (1.991) (1.498) (1.524) (2.051) (2.175)

RMW −2.530 −1.640 −2.843 −2.172 −2.375 −1.044
(2.611) (2.913) (2.305) (2.332) (4.033) (3.766)

CMA −11.062∗∗ −12.582∗∗ −7.815∗ −8.907∗∗∗ −6.688 −10.352∗∗∗

(4.219) (4.737) (4.529) (3.050) (5.272) (3.571)

Constant 2.349 19.679∗∗∗ 20.384∗∗∗ 1.593 18.945∗∗∗ 19.506∗∗∗ 2.523∗ 14.280∗ 15.930∗∗

(1.717) (5.914) (5.586) (1.552) (6.361) (4.868) (1.453) (7.654) (5.951)

Adjusted R2 -0.0109 0.1336 0.1073 0.0168 0.1374 0.1603 0.1447 0.0929 0.2224

Note: This table reports the estimation results of the regression of m∗dc|µ∗m
against the Fama-French five factors coupled with the crypto-market

factors proposed by Liu, Tsyvinski and Wu (2022). The standard errors of the estimates are inside the parentheses. In addition, one(*), two(**) and
three(***) asterisks denote statistical significance with p-values less than 5%, 2.5% and 1% respectively.
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Table 10-B

Relation Between the SDF of Non-Domesticated Cryptoassets and the Fama-French 5 Factors/Crypto-Market
Factors

Factors
95% 97.5% 99%

(1) (2) (3) (4) (5) (6) (7) (8) (9)

CMOM 1.061 1.137 3.098∗∗∗ 3.032∗∗∗ 2.522∗∗∗ 2.534∗∗∗

(0.983) (0.904) (0.800) (0.827) (0.519) (0.532)

CSMB −2.628∗∗∗ −2.527∗∗∗ −1.736∗∗∗ −1.748∗∗∗ −1.827∗∗∗ −1.852∗∗∗

(0.568) (0.523) (0.457) (0.437) (0.344) (0.305)

CMKT −0.726 −0.487 −2.193∗∗∗ −2.108∗∗∗ −2.843∗∗∗ −2.991∗∗∗

(0.729) (0.876) (0.534) (0.751) (0.471) (0.427)

MRMF −2.519 −1.741 −0.551 1.520 −1.806 1.493
(2.602) (2.529) (2.829) (1.751) (2.119) (1.181)

SMB −1.083 −2.512 −4.899 −4.877 −6.584 −6.070∗∗

(6.941) (7.258) (3.663) (2.940) (4.006) (2.520)

HML 1.350 2.643 −1.242 1.552 0.113 3.896∗∗∗

(4.765) (4.417) (3.034) (2.903) (2.951) (1.439)

RMW −7.747∗ −3.986 −3.308 −3.068 −5.052∗∗∗ −4.759∗∗

(4.506) (3.485) (2.734) (3.186) (1.792) (2.215)

CMA 6.440 1.621 12.276 4.806 10.141 0.657
(10.341) (7.774) (9.535) (4.847) (9.004) (3.277)

Constant 3.344∗∗∗ 4.576 6.908 1.862∗∗ −1.293 1.907 3.219∗∗∗ 4.189 8.173∗

(0.922) (12.428) (11.382) (0.854) (8.999) (4.667) (0.766) (8.763) (4.863)

Adjusted R2 0.1214 -0.0493 0.0499 0.3899 0.0217 0.3672 0.4904 0.0597 0.4981

Note: This table reports the estimation results of the regression of m∗nc|µ∗m
against the Fama-French five factors coupled with the crypto-market

factors proposed by Liu, Tsyvinski and Wu (2022). The standard errors of the estimates are inside the parentheses. In addition, one(*), two(**) and
three(***) asterisks denote statistical significance with p-values less than 5%, 2.5% and 1% respectively.
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Table 11-A

Relation Between the SDF of Domesticated Cryptoassets and the q-Five Factors/Crypto-Market Factors

Factors
95% 97.5% 99%

(1) (2) (3) (4) (5) (6)

CMOM −0.208 0.486 0.389
(0.672) (0.639) (0.518)

CSMB −0.486 −0.618∗ −1.248∗∗

(0.407) (0.357) (0.505)

CMKT 0.008 0.357 −0.467
(0.533) (0.633) (0.506)

R MKT −4.425∗∗ −4.273∗∗ −2.725∗ −3.156∗∗ −2.574∗ −2.257∗

(1.977) (2.045) (1.524) (1.551) (1.443) (1.232)

R ME −2.634 −2.905 −2.372 −2.109 −0.006 0.230
(2.710) (2.552) (2.461) (2.871) (3.126) (3.188)

R IA −9.062∗ −9.538∗∗ −10.285∗∗ −9.234∗∗∗ −7.068 −8.023∗∗

(4.561) (4.196) (4.465) (3.254) (4.438) (3.660)

R ROE 0.164 1.641 1.250 1.634 −1.184 1.385
(4.969) (5.053) (3.393) (3.461) (4.570) (3.407)

R EG −3.498 −4.665 −0.468 0.789 1.698 −0.641
(7.094) (6.673) (5.056) (4.944) (6.396) (5.506)

Constant 20.485∗∗ 21.473∗∗ 15.617∗∗ 12.855∗ 10.162 11.694
(9.672) (8.107) (7.276) (7.320) (8.808) (8.804)

Adjusted R2 0.0526 -0.0015 0.1409 0.1267 0.0437 0.1273

Note: This table reports the estimation results of the regression of m∗dc|µ∗m
against the q5 factors of Hou et al. (2021) coupled with the crypto-market

factors proposed by Liu, Tsyvinski and Wu (2022). The standard errors of the estimates are inside the parentheses. In addition, one(*), two(**) and
three(***) asterisks denote statistical significance with p-values less than 5%, 2.5% and 1% respectively.

91



Table 11-B

Relation Between the SDF of Non-Domesticated Cryptoassets and the q-Five Factors/Crypto-Market Factors

Factors
95% 97.5% 99%

(1) (2) (3) (4) (5) (6)

CMOM −0.162 2.359∗∗ 2.025∗∗∗

(0.877) (1.014) (0.528)

CSMB −2.387∗∗∗ −1.771∗∗∗ −1.778∗∗∗

(0.609) (0.559) (0.359)

CMKT −0.069 −1.821∗∗ −2.487∗∗∗

(0.874) (0.733) (0.602)

R MKT 1.349 1.765 3.032∗ 3.499∗ 1.680 2.814∗∗

(3.480) (3.293) (1.590) (2.036) (1.675) (1.127)

R ME −10.144 −10.676∗ −9.344∗ −7.148 −9.506∗ −7.477∗

(7.340) (6.180) (5.029) (4.822) (4.877) (3.873)

R IA −2.388 −3.811 0.375 −0.850 2.693 −0.262
(8.704) (8.427) (5.192) (5.186) (4.804) (3.449)

R ROE −4.138 1.743 2.328 3.727 −0.985 1.441
(12.001) (11.575) (7.455) (4.953) (5.888) (3.065)

R EG −3.683 −7.777 −1.876 −4.518 1.931 −3.462
(16.341) (15.168) (10.551) (9.766) (8.557) (5.829)

Constant 19.993 22.426 6.434 7.517 5.130 10.211
(22.367) (21.000) (13.207) (14.030) (12.970) (10.852)

Adjusted R2 -0.0570 0.0175 0.0019 0.3006 0.0359 0.4170

Note: This table reports the estimation results of the regression of m∗nc|µ∗m
against the the q5 factors of Hou et al. (2021) coupled with the crypto-

market factors proposed by Liu, Tsyvinski and Wu (2022). The standard errors of the estimates are inside the parentheses. In addition, one(*),
two(**) and three(***) asterisks denote statistical significance with p-values less than 5%, 2.5% and 1% respectively.
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Table 12-A

Domestication Result Based on RPPCA SDF

Panel (A) : Before Structural Break

Individual
Stocks

Statistics Mean Median S.D.
95% Confidence 97.5% Confidence 99% Confidence

Lower End Upper End Lower End Upper End Lower End Upper End

α̂c 0.0046 0.0045 0.0123 -0.0181 0.0280 -0.0273 0.0384 -0.0414 0.0577

Crypto
Assets

Statistics Mean Median S.D.
95% Confidence 97.5% Confidence 99% Confidence

Lower End Inside Upper End Lower End Inside Upper End Lower End Inside Upper End

α̂c 0.0727 0.0648 0.0396
0 5 38 0 8 35 0 16 27

(0%) (11.63%) (88.37%) (0.00%) (18.60%) (81.40%) (0.00%) (37.21%) (62.79%)

Panel (B) : After Structural Break

Individual
Stocks

Statistics Mean Median S.D.
95% Confidence 97.5% Confidence 99% Confidence

Lower End Upper End Lower End Upper End Lower End Upper End

α̂c 0.0087 0.0060 0.0177 -0.0178 0.0503 -0.0251 0.0628 -0.0317 0.0818

Crypto
Assets

Statistics Mean Median S.D.
95% Confidence 97.5% Confidence 99% Confidence

Lower End Inside Upper End Lower End Inside Upper End Lower End Inside Upper End

α̂c 0.0559 0.0464 0.0565
12 212 193 5 261 151 3 313 101

(2.88%) (50.84%) (46.28%) (1.20%) (62.59%) (36.21%) (0.72%) (75.06%) (24.22%)

Note: This table presents the estimation results of domestication measures associated with the implied stochastic discount factor constructed upon
the five risk-premium principal components following Lettau and Pelger (2020). The upper (lower) panel reports the result for the before (after)
sturcutral break. The cross-sectional distributions of the estimate of α̂∗c of the individual stocks. It reports its mean, median and standard deviation
(S.D.) and also the lower and upper-end values of 95%, 97.5% and 99% confidence intervals.
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Table 12-B

Correlations Between the RPPCA SDF and the SDFs of Cryptoassets

# of
Clusters

Confidence
Level

α̂∗c

m∗dc|µ∗m
m∗nc|µ∗m

m∗dc m∗nc

10 95.0% 0.2481 0.0285 0.1037 -0.0561
10 97.5% 0.3357 0.0483 0.2268 -0.0948
10 99.0% 0.3285 -0.0758 0.1555 -0.0322

11 95.0% 0.2532 0.0239 0.1313 -0.0697
11 97.5% 0.3326 0.0201 0.2288 -0.1248
11 99.0% 0.3224 -0.0808 0.2764 -0.0312

12 95.0% 0.3621 -0.0059 0.2512 -0.0931
12 97.5% 0.3328 0.0406 0.2535 -0.1186
12 99.0% 0.3165 -0.0675 0.3007 -0.0180

13 95.0% 0.3735 -0.0207 0.3149 -0.0765
13 97.5% 0.2937 0.0454 0.2701 -0.1189
13 99.0% 0.3172 -0.0595 0.2994 -0.1314

14 95.0% 0.2864 -0.0204 0.2446 -0.1342
14 97.5% 0.2739 0.0407 0.2796 -0.1224
14 99.0% 0.3245 -0.0699 0.3001 -0.1414

15 95.0% 0.2955 -0.1014 0.2164 -0.1965
15 97.5% 0.2004 -0.0049 0.1879 -0.1252
15 99.0% 0.3203 -0.0469 0.2864 -0.0214

Note: This table reports the correlation coefficients between implied stochastic discount factor from the
five risk-premium principal components based on the 35 anomalys from Chen and Zimmermann (2022)
and the SDF of the cryptoassets designated as domesticated assets (and non-domesticated assets) by each
domestication measure. m∗dc|µ∗m

(m∗nc|µ∗m
) is the minimum-norm SDF retrieved from the domesticated cryptos

under the restriction that it has the mean same to that of the basis assets, i.e., E(m∗dc|µ∗m
) = µ∗m. m∗nc|µ∗m

is the minimum-norm SDF retrieved from the non-domesticated cryptos under the same restriction. In
contrast, m∗dc (m∗nc) is the GMN-SDF retrieved from the domesticated (non-domesticated) cryptos without
any restriction on its mean.
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Table 12-C

Bootstrapped Distribution of the Correlations Between the RPPCA SDF and the SDFs of Cryptoassets

Domes.
Measure

SDFs of
Cryptos

Confidence
Level

Domesticated Cryptoassets Non-Domesticated Cryptoassets

Mean Median S.D. Min Max p-value Mean Median S.D. Min Max p-value

α∗c m∗c|µ∗m

95.0% 0.2741 0.2756 0.1130 -0.2569 0.6450 0.0092 -0.0299 -0.0305 0.1022 -0.4125 0.3822 0.6199
97.5% 0.2647 0.2685 0.1125 -0.2006 0.6374 0.0116 -0.0598 -0.0593 0.0922 -0.4196 0.4105 0.7414
99.0% 0.2129 0.2159 0.1138 -0.2473 0.5644 0.0358 -0.1100 -0.1109 0.0837 -0.4060 0.2021 0.9044

α∗c m∗c

95.0% 0.2576 0.2616 0.1183 -0.2299 0.6377 0.0168 -0.0222 -0.0195 0.1282 -0.5288 0.4828 0.5666
97.5% 0.2482 0.2527 0.1183 -0.2619 0.6449 0.0229 -0.0089 -0.0093 0.1224 -0.4850 0.4461 0.5314
99.0% 0.1899 0.1925 0.1228 -0.3334 0.6197 0.0637 0.0018 0.0032 0.1225 -0.4087 0.4186 0.4913

Note: This table presents the bootstrapped sampling distribution of correlation between the implied stochastic discount factor from the five risk-
premium principal components based on the 35 anomalys from Chen and Zimmermann (2022) and the relevant SDF retrieved from the cryptos that
are designated as domesticated (non-domesticated) assets by domestication measure α̂c

∗. S.D. stands for standard deviation and p-value refers to the
p-value of zero correlation.95



Figure 1

Posterior probability of state 1

Note: This figure plots the posterior probability of state 1 along with the rolling correlations between the
Bitcoin and S&P500 returns, where the window size is 100 business days.

Figure 2

Time line of major events in the crypto market

Note: This figure summarizes the major events that have taken place in the crypto market. The institution-
alization begins with the inception of futures on Bitcoin in major derivative exchanges such as CBOE and
CME.
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Table A.1

Simulation Results on Testing the Unbiasedness of Statistics

βc0 σec Parameter α∗c ‖e‖ α∗c
‖e‖ α∗c‖e‖ ‖ωc‖ α∗c

‖ωc‖ α∗c‖ωc‖

0.01 0.01
True 0.0628 0.0100 6.2765 0.0006 0.0100 6.2748 0.0006

Simulation 0.0628 0.0100 6.2776 0.0006 0.0100 6.2769 0.0006

0.01 0.10
True 0.0628 0.1000 0.6276 0.0006 0.0100 0.6276 0.0063

Simulation 0.0627 0.1000 0.6274 0.0006 0.0100 0.6275 0.0063

0.01 0.50
True 0.0628 0.5000 0.1255 0.0314 0.5000 0.1255 0.0314

Simulation 0.0626 0.5000 0.1253 0.0313 0.5000 0.1253 0.0313

0.01 1.00
True 0.0628 1.0000 0.0628 0.0628 1.0000 0.0628 0.0628

Simulation 0.0624 1.0001 0.0625 0.0624 1.0000 0.0625 0.0624

0.10 0.01
True 0.1521 0.0100 15.2090 0.0015 0.0103 14.8085 0.0016

Simulation 0.1521 0.0100 15.2126 0.0015 0.0103 14.7970 0.0016

0.10 0.10
True 0.1521 0.1000 1.5209 0.0152 0.1000 1.5205 0.0152

Simulation 0.1521 0.1000 1.5211 0.0152 0.1000 1.5209 0.0152

0.10 0.50
True 0.1521 0.5000 0.3042 0.0760 0.5000 0.3043 0.0760

Simulation 0.1523 0.5000 0.3046 0.0761 0.4998 0.3046 0.0761

0.10 1.00
True 0.1521 1.0000 0.1521 0.1521 1.0000 0.1521 0.1521

Simulation 0.1520 1.0000 0.1520 0.1520 0.9999 0.1520 0.1519

0.50 0.01
True 0.5491 0.0100 54.9091 0.0055 0.0154 35.6625 0.0085

Simulation 0.5491 0.0100 54.9234 0.0055 0.0155 36.1650 0.0085

0.50 0.10
True 0.5491 0.1000 5.4909 0.0549 0.1007 5.4537 0.0553

Simulation 0.5491 0.1000 5.4909 0.0549 0.1007 5.4528 0.0053

0.50 0.50
True 0.5491 0.5000 1.0982 0.2745 0.5001 1.0979 0.2746

Simulation 0.5494 0.5001 1.0986 0.2747 0.5002 1.0984 0.2748

0.50 1.00
True 0.5491 1.0000 0.5491 0.5491 1.0001 0.5491 0.5491

Simulation 0.5494 1.0001 0.5493 0.5495 1.0001 0.5494 0.5495

Note: This table summarizes the simulation results on testing the unbiasedness of relevant statistics. We
report the mean value of the statistics for each combination of βc0 and σec based on 500,000 simulations.
In each round of simulation, we compute α̂∗c , which is the unbiased estimator proposed in Proposition 6.

Similarly we compute sec ,
α̂∗c
‖ec‖ and α̂∗c‖ec‖ in Proposition 7-A, which are the unbiased estimators of ‖ec‖,

α∗c
‖ec‖ and α∗c‖ec‖ respectively. In contrast, we compute sωc

,
α̂∗c
‖ωc‖ and α̂∗c‖ωc‖, the pseudo-unbiased estimators

of ‖ωc‖, α∗c
‖ωc‖ and α∗c‖ωc‖ in Proposition 7-B. Here The basis assets employed in simulations are the post-

break returns on the Fama-French twenty-five portfolios and the locally risk-free asset. In each round of
simulation, we set the estimated post-break betas (β̂c) of Bitcoin as the hypothetical true β̂c and simulate
xc given βc0, βc and σec using the random normal generator.
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Figure 3

Time line of the overnight effect

Note: This figure displays the time line used in the analysis of the overnight effect. New York Stock Exchange
(NYSE) closes at EST (Eastern Standard Time) 16:00 and opens at EST 09:30 on the following business
day. SUSt is the overnight (after-hour) returns on the S&P500 and the Nasdaq. SUKt is the return on the
FTSE100 index from EST 03:00 (when the London Stock Exchange opens) to EST 09:00, 30 mininutes
before the opening of the NYSE. RBt stands for the return on Bitcoin from EST 16:00 to EST 09:00.
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Figure 4

The Mean-Squared Second Norm Bounds for the SDFs

Note: This figure compares the mean-squared second norm bounds for the SDF generated by x (the set
of stock basis assets) and xa (the augmented set of assets). Each of the two bounds is parabolic and they

are tangent at E(m) =
1−β′clN
µc−β′cµx

. The mean and squared second norm of the global minimum-norm SDF

generated by the basis assets are µ∗m and ‖m∗x‖ respectively. Similarly, the corresponding moments of the
global minimum-norm SDF generated by the augmented set of assets are E(m∗xa

) and ‖m∗xa
‖ respectively.

ε∗c is an orthogonal expansion of m∗x which leads to m∗xa
whereas ε∗c|µ∗m

is an orthogonal extensions of m∗x
which yields m∗xa|µ∗m

.
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