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I. Introduction 

The discontinuous jump in financial assets, such as exchange rates, has become one of the most 

important issues since the global financial crisis of 2007–2008 and the Euro crisis of 2010–2012. In July 

2018, the then U.S. President Donald Trump imposed sweeping tariffs on China for alleged unfair trade 

practices. The uncertainty in the U.S.–China Trade War may lead to reduced world trade, and ultimately 

affect the Korean economy and trade and subject the Korean won–U.S. dollar exchange rate to greater 

volatility. In the 2010s in particular, jumps in the Korean won–U.S. dollar exchange rates occurred 

frequently: 1152.10 on July 1, 2016; 1070.31 on March 20, 2018; 1217.45 on March 16, 2020; and 1117.15 

on April 30, 2021. 

As noted, the volatility of Korean won–U.S. dollar exchange rates is connected to the trade between 

Korea and the U.S. The volatility and jumps in this rate also influence the trade between Korea and the U.S. 

This makes it crucial to accurately estimate the volatility as well as the frequency and probability of jumps 

in the volatile Korean won–U.S. dollar exchange rates that occurred in the 2010s using more efficient, 

robust volatility and jump estimation. Thus far, parametric approaches, particularly the autoregressive 

conditional heteroskedastic (ARCH) models and stochastic volatility, which were popularly used for such 

analyses before the 2000s, have not adequately addressed this problem. There is a need to incorporate 

discontinuous jumps in the volatility process observed in recent years. In this regard, the effectiveness of 

the volatility estimations has been tested in various ways while considering the volatility and jumps in 

exchange rates. 

The parametric approaches rely on explicit functional forms that cannot be inherently specified in detail. 

It is nearly impossible to explain the discontinuous jump parts of intraday return volatility using parametric 

models. Dewachter et al. (2014) show that the Gaussian quasi-maximum likelihood estimates of generalized 

ARCH (GARCH) models, subject to the presence of additive jumps, tend to overestimate the volatility for 

the days following the jumps and produce upward-biased estimates of long-term volatility. 

To overcome these drawbacks of parametric approaches, scholars have introduced and developed 

nonparametric approaches that use high-frequency daily and intraday asset returns data (Andersen et al., 

2001, 2003; Andersen et al., 2002, 2004; Barndorff-Nielsen and Shephard, 2005a, 2005b, 2006). Notably, 

it is nearly impossible to analyze discontinuous jumps in the volatility of Korean won–U.S. dollar exchange 

rates. Therefore, we use a modified version of the nonparametric approach proposed by scholars, 

particularly Andersen et al. (2004, 2007), Huang and Tauchen (2005), and Lee and Mykland (2008).  

Nevertheless, the studies cited above do not account for intraday volatility periodicity. According to 

Boudt et al. (2011b), disregarding intraday volatility periodicity can influence the accuracy of the estimated 

jump statistics and jump detection considerably. To overcome this, Boudt et al. (2011a, 2011b) used 
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volatility periodicity filters with the nonparametric method. Yi (2014) also included the periodicity filters 

of volatility but analyzed the volatility of U.S. SPC500 returns using Z-type jump statistics. Similarly, Yi 

(2020) used Z-type normal distribution jumps of exchange rates based on outlying weighted quarticity 

statistics using a Gumbel distribution. 

Lee and Hannig (2010) proposed another version of the Lee and Hannig (LH) test to obtain robust 

estimates for both finite and infinite exchange rate jumps. The detection method for big jumps was the same 

as that of Lee and Mykland (2008). The jump component captures both finite and infinite activity price 

jumps. Mancini (2009) and Bollerslev and Todorov (2011) and Yi (2023) suggested using truncated power 

variation to consistently estimate integrated volatility.  

Although the linear drift process falls within the general asset price specification, Laurent and Shi (2020) 

showed that the infinite sample performance of their Laurent and Shi (LS) test for additive jumps is far 

from satisfactory. When asset prices deviate locally from the random walk, the test shows a strong size 

distortion and dramatic power loss. They applied the tests on 21 years of five-minute log-returns of the 

Nasdaq stock price index and found that, unlike Lee and Mykland’s (2008) test by the same name (Lee and 

Mykland [LM] test), their test allows the detection of jumps when log prices exhibit clear upward or 

downward trend movements. Specifically, Laurent and Shi (2020) showed that the mean of five-minute log 

returns generated by a model with or without jumps that deviates from the random walk can be non-

negligible, which invalidates the use of bipower variation. 

Although most studies (e.g., Barndorff-Nielsen and Shephard, 2005a, 2005b, 2006; Andersen et al., 2004, 

2007; Boudt et al., 2011b; Yi 2014) have adopted the standard normal Z-type jump statistics of the standard 

normal distribution, we adopt the Gumbel distribution to determine whether significant daily and intraday 

jumps occur. Therefore, maximum outlying (or max outlying) daily jumps and intraday jump probabilities 

are analyzed using volatility periodicity filters in five-minute returns of the Korean won–U.S. dollar 

exchange rates. 

Essentially, we use a nonparametric realized volatility model with intraday volatility periodicity to 

explain the discrete jumps and continuous volatility of the Korean won–U.S. dollar exchange rates during 

2010–2021. We adopt the realized volatility and jump statistics using the volatility periodicity with LH, LS, 

and LM jump statistics.  

Our approach has several highlights. First, unlike most studies, this study utilizes the newly developed 

periodicity window factors of volatility of financial assets, or periodicity filters, such as weighted standard 

deviation (WSD), shortest half scale (ShortH), and median absolute deviation (MAD). 

Second, the severe volatility of Korean won–U.S. dollar movements in the 2010s has violated the 

Gaussian distribution. Thus, a robust estimator for jumps is required for non-Gaussian data. We adopt the 
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Gumbel distribution to determine whether a significant daily and intraday jump occurs using max outlying 

daily jumps. Further, we employ the aforementioned jump statistics to determine whether a significant jump 

occurs.  

Third, to estimate the volatility and jumps in Korean won–U.S. dollar exchange rates, efficient and 

robust estimators of the jumps should be obtained using the periodicity filters of intraday volatility during 

the volatile 2010s, as in Lee and Mykland (2011a, 2011b). However, while these authors used the 

periodicity filters of intraday volatility with bipower variations, we use local robust variances to estimate 

the integrated volatility.  

Fourth, besides the periodicity filters of intraday volatility during the 2010s, as in Lee and Mykland 

(2011a, 2011b), we also use the LH test to obtain robust estimates for both finite and infinite exchange rate 

jumps. Fifth, Laurent and Shi (2020) showed that the LM test detects upward or downward jumps, which 

are negligible. This invalidates the use of bipower variation.  

Therefore, we use the truncated power variation to estimate the integrated volatility consistently. Besides 

using the LS test to determine the volatility of Korean won–U.S. dollar movements, we compare the 

probability of jumps in the 2010s during which events such as the Euro crisis and the U.S.–China Trade 

War occurred. Therefore, we account for the periodicity window factors of intraday volatility and jumps to 

derive robust jump statistics and avoid biased estimators.  

The remainder of this study is organized as follows. Section II undertakes the literature review. Section 

III introduces the realized volatility, jump statistics, and jump tests with periodicity filters of volatility. 

Section IV presents the high-frequency data and empirical results of several jump statistics associated with 

jump probabilities. Finally, section V summarizes the empirical findings and presents the conclusions of 

this study. 

 

II. Literature Review 

Around the beginning of the 2000s, many studies adopted volatility models that use the parametric 

approach (Andersen et al., 2003; Chernov et al., 2003; Eraker, 2004; Eraker et al., 2003; Pan, 2002; 

Johannes, 2004). However, it is considerably difficult to estimate frequent jump diffusions through 

continuous parametric approaches. Moreover, there are difficulties in incorporating the complexities of 

micro financial markets appropriately into empirical parametric models. Models using low-frequency data 

cannot explain why discontinuous jumps occur frequently, even in intraday returns in financial assets.  

     Therefore, nonparametric approaches using realized volatility with high-frequency intraday returns were developed 

to capture discontinuous jump parts and the continuous volatility of financial asset returns. Bollerslev and Zhou (2002, 
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2006) and Fleming et al. (2003) developed realized volatility as a new volatility measure. By incorporating realized 

high-frequency intraday returns, the nonparametric volatility models in Andersen et al. (2003) provide enhanced 

empirical results compared with complicated parametric volatility models, such as GARCH and stochastic volatility 

models. This nonparametric volatility approach uses high-frequency intraday return data, such as one-minute or five-

minute returns.  

Some authors have analyzed the total variation (Andersen and Bollerslev, 1998a, 1998b; Andersen et 

al., 2003; Barndorff-Nielsen and Shephard, 2005a, 2005b, 2006; Andersen et al., 2004, 2007; Huang and 

Tauchen, 2005), which can be separated into continuous variation parts and discontinuous jump parts. These 

studies have concluded that discontinuous jumps are an important source of non-predictable exchange rate 

volatility. Among recent studies, Bollerslev and Todorov (2011) estimated jump tails and premia, which 

cannot be explained using continuous volatility.  

Others have examined jumps, co-jumps, macro events, and macro news, and their effects. Lahaye et al. 

(2011) examined jumps, co-jumps, and macro announcements. Laakkonen and Lanne (2013) analyzed the 

impact of macroeconomic news on exchange rate volatility. Bibinger et al. (2014) estimated the spot 

covariation of assets, while Bibinger and Winkelmann (2013) estimated co-jumps in high-frequency data 

with noise. Dewachter et al. (2014) examined the intraday impact of communication on U.S. dollar-Euro 

volatility and jumps. Similar to Lahaye et al. (2011), Chatrath et al. (2014) analyzed currency jumps, co-

jumps, and the role of macro news. Délèze and Hussain (2014) examined information arrival, jumps, and 

co-jumps in European financial markets.  

Meanwhile, Pukthuanthong and Roll (2015) analyzed internationally correlated jumps in stock returns 

in 82 countries based on the quarticity of standard deviations proposed by Barndorff-Nielsen and Shephard 

(2006) and the jump statistic based on bipower variations. Siroos and Narayan (2019) analyzed the intraday 

effects of the currency market using hourly exchange rates from 2004 to 2014. Arouri et al. (2019) analyzed 

international asset allocation in the presence of systematic co-jumps using Huang and Tauchen’s (2005) 

jump test statistics and the rescaled intraday returns proposed by Bollerslev et al. (2009).  

However, Arouri et al. (2019) did not consider intraday periodicity filters of volatility. According to 

Lee and Mykland (2008) and Boudt et al. (2011a, 2011b), disregarding this aspect of intraday volatility 

periodicity may hinder the accuracy of jump detection. Recently, research has started adopting intraday 

periodicity filters in volatility to estimate discontinuous volatility and jumps in high-frequency financial 

assets.  

Some solutions have been proposed. Lee and Hannig (2010) proposed using the LH test to obtain robust estimates 

for both finite and infinite exchange rate jumps. Mancini (2009) and Bollerslev and Todorov (2011) suggested using 

truncated power variation to consistently estimate integrated volatility. Laurent and Shi (2020) showed that the infinite 

https://kuntara.weebly.com/uploads/1/1/4/9/114945401/cojumps-asset-allocation_to_jedc.pdf
https://kuntara.weebly.com/uploads/1/1/4/9/114945401/cojumps-asset-allocation_to_jedc.pdf
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sample performance of their LS test for additive jumps is far from satisfactory, unlike the Lee and Mykland (2008) 

test. Moreover, Laurent and Shi (2020) showed that the mean of five-minute log returns generated by a model with or 

without jumps that deviate from the random walk can be non-negligible, which invalidates the use of bipower variation. 

In summary, the reasoning and methods used in this study align with those of Andersen et al. (2004, 2007), Lee 

and Mykland (2008), and Boudt et al. (2011a, 2011b). However, this study progresses differently and differs from 

earlier models, and makes the following contributions to the literature.  

First, we introduce newly developed periodicity window factors of the volatility of financial assets. In this respect, 

our study differs vastly from Andersen et al. (2004, 2007) and Lee and Mykland (2008), who did not consider these 

periodicity window factors of volatility. Second, we use both daily and intraday jumps because high volatility 

and significant jumps within a day can affect daily volatility. This differs from previous studies. For 

example, Siroos and Narayan (2019) analyzed only the intraday effects of the currency market. 

Furthermore, unlike previous studies that used standard normal Z statistics, we adopt the Gumbel 

distribution to determine whether there are significant daily and intraday jumps.  

Third, we analyze and compare the volatility and probability of jumps in the Korean won and U.S. dollar exchange 

rates using LM and LH tests, and the LS jump statistics. We use the truncated power variation to estimate consistently 

the integrated volatility instead of bipower volatility. 

 

III. Realized Volatility, Jumps, and Periodicity Filters  

 

3.1. Realized Volatility  and Jump with Normal Distribution  

Following Barndorff-Nielsen and Shephard (2004) and Bollerslev et al. (2009), let us consider that T days 

of M equally-spaced intraday returns and  the j-th intraday return of day 𝑡 by 𝑟𝑡,𝑖. M represents the observed 

intraday sampling frequency Thus, the daily realized volatility or variation of day t (RVt) is represented by 

the sum of the intraday realized squared variation in equation (1). 

                                                                                       (1) 

The daily realized volatility converges to the increment of the quadratic variation process as the 

sampling frequency (M) of the underlying returns goes to infinity or ((1/M)≡Δ) approaches zero, as pointed 

out by Andersen, Bollerslev, and Diebold (2007). In reality, however, jumps in exchange rates occur 

occasionally and the occurrence of jumps is generally assumed to follow a Poisson, which is a continuous-

time discrete process in which the realized volatility inherits the continuous sample path process and the 

discrete jump process. In the presence of jumps, realized volatility is no longer a consistent estimator of 

integrated volatility. Thus, for Δ→0, the daily realized volatility on day t converges in probability to the 
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sum of continuous integrated variance and the daily summation of discrete N jumps of size κt, as in equation 

(2).   

                                                                  (2) 

This study adopts the standard realized bipower variation (BVt) developed by Barndorff-Nielsen and 

Shephard (2004, 2006). Huang and Tauchen (2005) showed that the realized bipower variation converges 

in probability to the integrated variation, as Δ→0 or M becomes sufficiently large.   

    

               (3) 

The bipower variation is robust to jumps because it uses the product between two consecutive returns 

instead of the squared return. As M approaches infinity and there are no jumps in the volatility of financial 

assets, the joint distribution of the realized volatility and the realized bipower variation has the property of 

the normal distribution, as shown by Barndorff-Nielsen and Shephard (2006).    

 

3.2. Volatility Periodicity Filters    

As Boudt, Croux, and Laurent (2011a) proposed, the high-frequency return variance 𝜎𝑡,𝑖
2  has a periodic 

component 𝑓𝑡,𝑖
2  due to the weekly cycle of opening, lunch, and closing times at financial centers. However, 

Barndorff-Nielsen and Shephard (2004) and Andersen, Bollerslev, and Diebold (2007) did not consider the 

periodicity of volatility. Therefore, this study adopts nonparametric estimators in the presence of jumps 

using periodicity. To identify the periodicity factor 𝑓𝑡,𝑖
2   for the average variance of day t, the squared 

periodicity factor has a mean of one over the local window.  

In line with Boudt, Croux, and Laurent (2011b), to estimate the periodicity factor, this study uses a 

nonparametric estimator of the standardized returns scale. Thus, the estimator will be robust to jumps. The 

nonparametric estimator is based on a scale estimate of the standardized returns 𝑟𝑡,𝑖̅̅̅̅ = 𝑟𝑡,𝑖/𝑠𝑡,�̂�, where 𝑠𝑡,�̂� =

√
1

𝑀−1
𝐵𝑉𝑡. These standardized returns share the same periodicity factor as 𝑟𝑡,𝑖, and are observed at the same 

time of the day and day of the week as 𝑟𝑡,𝑖. The periodicity estimator can be assumed to follow the classical 

estimator, which is based on the standard deviation, and is similar to Taylor and Xu’s (1997) periodicity 

estimate. This, in turn, is based on the averages of squared returns.  
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𝑓𝑡,𝑖
𝑆𝐷 =

𝑆𝐷𝑡,𝑖

√ 1
𝑀

∑ 𝑆𝐷𝑡,𝑗
2𝑀

𝑗=0

, 𝑆𝐷𝑡,𝑖 = √
1

𝑛𝑡,𝑖
∑ 𝑟𝑗;𝑡,𝑖

2̅̅ ̅̅ ̅

𝑛𝑡,𝑖

𝑗=1

                                                                             (4) 

This estimator of standard deviation is efficient only in the absence of jumps. We cannot use this 

estimator in the presence of jumps because the observation can be affected by jumps, which makes the 

periodicity estimate arbitrarily large.  

First, following various filters proposed by Boudt, Croux, and Laurent (2011a, 2011b), this study adopts 

the MAD. The MAD of a sequence of observations 𝑦1, ⋯ , 𝑦𝑛 is defined as 1.486𝑚𝑒𝑑𝑖𝑎𝑛𝑖|𝑦𝑖 −

𝑚𝑒𝑑𝑖𝑎𝑛𝑖𝑦𝑖|, where 1.486 is the correction factor that guarantees that the MAD will be a consistent scale 

estimator for normal distributions.  

The MAD estimator for the periodicity factor is presented in equation (5).  

  𝑓𝑡,𝑖
𝑀𝐴�̂�  =

𝑀𝐴𝐷𝑡,𝑖

√ 1
𝑀

∑ 𝑀𝐴𝐷𝑡,𝑖
2𝑀

𝑗=1

                                                                                                          (5) 

Second, the ShortH estimator, proposed by Rousseeuw and Leroy (1988), is considered as efficient as 

the MAD under normality because the ShortH estimator is consistent in the presence of infinitesimal 

contaminations based on jumps in the data. According to these authors, it gives the smallest maximum bias 

possible; the jump estimator can cause bias among a wide class of scale estimators. Moreover, it is 

computationally convenient and does not require a location estimation. The ShortH estimator for the 

periodicity factor is given by equation (6). 

𝑓𝑡,𝑖
𝑆ℎ𝑜𝑟𝑡𝐻̂

=
𝑆ℎ𝑜𝑟𝑡𝐻𝑡,𝑖

√ 1
𝑀

∑ 𝑆ℎ𝑜𝑟𝑡𝐻𝑡,𝑗
2𝑀

𝑗=1

                                                                                                   (6) 

𝑆ℎ𝑜𝑟𝑡𝐻𝑡.𝑖 = 0.741 min {𝑟(ℎ𝑡,𝑖):𝑡,𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑟(1):𝑡,𝑖̅̅ ̅̅ ̅̅ ̅̅ , ⋯ , 𝑟(𝑛𝑡,𝑖):𝑡,𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑟(ℎ𝑡,𝑖−1):𝑡,𝑖}              

Boudt, Croux, and Laurent (2011a, 2011b) showed that the standard deviation applied to the returns 

weighted in the function of their outlyingness offers a better trade-off between the efficiency of the standard 

deviation under normality and the high robustness to jumps of the shortest half dispersion. The estimator 

for the periodicity factor under the WSD estimate equals the following:  

𝑓𝑡,𝑖
𝑊𝑆�̂� =

𝑊𝑆𝐷𝑡,𝑖

√ 1
𝑀

∑ 𝑊𝑆𝐷𝑡,𝑖
2𝑀

𝑗=1

, 𝑊𝑆𝐷𝑡,𝑗 = √1.081
∑ 𝑤 [(𝑟𝑙:𝑡,𝑗 𝑓𝑡,𝑗

𝑆ℎ𝑜𝑟𝑡̂ 𝐻⁄ )
2

] 𝑟𝑙:𝑡,𝑗
2̅̅ ̅̅ ̅𝑛𝑡,𝑗

𝑙=1

∑ 𝑤 [(𝑟𝑙:𝑡,𝑗 𝑓𝑡,𝑗
𝑆ℎ𝑜𝑟𝑡̂ 𝐻⁄ )

2
]

𝑛𝑡,𝑗

𝑙=1

           (7) 

where the factor 1.081 ensures consistency of the estimator under normality.  
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3.3. Intraday Gumbel Distribution Jump Tests with Periodicity Filters 

Next, we test whether any intraday return 𝑟𝑡,𝑖  has a purely continuous diffusion or jump in the price process, 

following Lee and Mykland (2008) and Boudt, Croux, and Laurent (2011b). If a return contains a jump 

component, it should be abnormally large. An abnormal return in times of high volatility is larger than that 

in times of low volatility. Therefore, the aforementioned authors use the ratio of the tested return to a 

measure of local volatility. The intraday jump statistic 𝐼𝐷𝐽𝑡,𝑖  tests whether a jump occurred between 

intraday periods 𝑖 − 1 and 𝑖 of day 𝑡. It is defined as the absolute return divided by an estimate of the local 

standard deviation 𝜎𝑡,�̂�: 

𝐼𝐷𝐽𝑡,𝑖 =
|𝑟𝑡,𝑖|

𝜎𝑡,�̂�
.                                                                                                                                                  (8) 

Under the null of no jump at the time of testing, the process belongs to the family of Brownian 

semimartingale jump models. A suitable choice of window size for local volatility asymptotically follows 

a standard normal distribution. We can replace the local variance 𝜎𝑡,�̂� by 𝑠𝑡,�̂� = √
1

𝑀−1
𝐵𝑉𝑡.   

𝐼𝐷𝐽𝑡,𝑖 =
|𝑟𝑡,𝑖|

√ 1
𝑀 − 1 𝐵𝑉𝑡

.                                                                                                                               (9) 

To minimize spurious jump detection, the filtered LM jump statistic 𝐼𝐷𝐽𝑡,𝑖, proposed by Broudt, Croux, 

and Laurent (2011b), follows a Gumbel distribution when Δ → 0 under the assumption of no jump in the 

interval 𝑖 − 1 and 𝑖 of day 𝑡. Hence, we reject the null of no jump during day 𝑡 at the α % critical level if: 

𝐼𝐷𝐽𝑡,𝑖 > 𝐺−1(1 − 𝛼)𝑆𝑛 + 𝐶𝑛 

𝐶𝑛 = (2 log 𝑛)0.5 −
log(𝜋) + log(log 𝑛)

2(2 log 𝑛)0.5
,   𝑆𝑛 =

1

(2 log 𝑛)0.5
.                                                          (10) 

When 𝑛 = 𝑀  (i.e., number of observations per day) and 𝑛 = 𝑀𝑇  (i.e., the total number of 

observations), the expected number of detected jumps is equal to 𝛼𝑇 and 𝛼 (i.e., ≈ 0), respectively.  

 

3.3.1.   Lee and Mykland (LM) Jump Tests with Periodicity Filters  

If we ignore periodic volatility patterns, it can lead to spurious jump identifications. Boudt, Croux, and 

Laurent (2011b) suggested accounting for the strong periodicity in volatility, showing that it provides more 

appropriate results. In this study, to consider periodic volatility patterns, we can derive  the three robust 

nonparametric estimators 𝑠𝑡,�̂�𝑓𝑡,𝑖
𝑀𝐴�̂� , 𝑠𝑡,�̂�𝑓𝑡,𝑖

𝑆ℎ𝑜𝑟𝑡̂ 𝐻 , and 𝑠𝑡,�̂�𝑓𝑡,𝑖
𝑊𝑆�̂�  to estimate 𝜎𝑡,�̂�  and the Lee and Mykland  

(LM) jump statistics as follows: 
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     𝐿𝑀 𝐼𝐷𝐽𝑡,𝑖
𝑀𝐴𝐷  =  

|𝑟𝑡,𝑖|

𝑠𝑡,�̂�𝑓𝑡,𝑖
𝑀𝐴�̂�

=   
|𝑟𝑡,𝑖|√

1
𝑀 − 1

∑ 𝑀𝐴𝐷𝑡,𝑖
2𝑀

𝑗=1

�̂�𝑡,𝑖𝑀𝐴𝐷𝑡,𝑖
                                                           (11) 

    𝐿𝑀 𝐼𝐷𝐽𝑡,𝑖
𝑆ℎ𝑜𝑟𝑡𝐻  =  

|𝑟𝑡,𝑖|

𝑠𝑡,�̂�𝑓𝑡,𝑖
𝑆ℎ𝑜𝑟𝑡̂ 𝐻

=
|𝑟𝑡,𝑖|√

1
𝑀 − 1

∑ 𝑆ℎ𝑜𝑟𝑡𝐻𝑡,𝑖
2𝑀

𝑗=1

�̂�𝑡,𝑖𝑆ℎ𝑜𝑟𝑡𝑡,𝑖
                                                (12) 

  𝐿𝑀  𝐼𝐷𝐽𝑡,𝑖
𝑊𝑆𝐷  =  

|𝑟𝑡,𝑖|

𝑠𝑡,�̂�𝑓𝑡,𝑖
𝑊𝑆𝐷   =    

|𝑟𝑡,𝑖|√
1

𝑀 − 1
∑ 𝑊𝑆𝐷𝑡,𝑖

2𝑀
𝑗=1

�̂�𝑡,𝑖𝑊𝑆𝐷𝑡,𝑖
                                                          (13) 

Under the null of no jump and a consistent estimate  𝜎𝑡,�̂�, 𝐼𝐷𝐽𝑡,𝑖  follows a standard normal distribution, 

which has an absolute value. If the statistic exceeds a plausible maximum, the null of no jump can be 

rejected. However, Brownlees and Gallo (2006) found that a normal distribution spuriously detects many 

jumps. If we ignore periodic volatility, it leads to over-detection of jumps in periods of high intraday 

periodic volatility. 

 

3.3.2.  Lee and Hannig Jump Test using the Truncated Power Variation 

Lee and Hannig (2010) proposed another version of the LH test. The detection method for big jumps was 

the same as that of Lee and Mykland (2008). According to Laurent (2018), the only difference is in the way 

spot volatility is estimated. The nonparametric estimator is based on a scale estimate of the standardized 

returns 𝑟𝑡,𝑖̅̅̅̅ = 𝑟𝑡,𝑖/𝑆𝑡,𝑖
𝐿�̂� , where 𝑆𝑡,𝑖

𝐿�̂� = √
1

𝑀−1
𝑇𝑉𝑡 , where 𝑇𝑉𝑡  is the truncated power variation. If we have 

intraday periodicity in volatility and estimate spot volatility, we have the following:  

𝑆𝑡,𝑖
𝐿�̂�  =  𝑓𝑡,�̂�√

1

𝑀−1
𝑇𝑉𝑡.                                                                                     (14) 

Under the Brownian semimartingale with infinite activity jumps (BSMIAJ) model, the diffusion 

component captures the smooth variation of the price process. The jump component accounts for both rare, 

large discontinuities, and frequent, small jumps in prices. A BSMIAJ log-price diffusion admits the 

following representation: 

dp(t) = μ (t)dt + σ(t)dW(t) + κ(t)dq(t) + h(t)dL(t),  t ≥ 0,                           (15) 

where q(t) is a counting process (possibly a Poisson process), L(t) represents either an α-stable process or 

a Cauchy process, as in Lee and Hannig (2010), and κ(t) and h(t) denote the jump sizes of the corresponding 

jump processes, respectively.  

The jump component captures both finite and infinite activity price jumps. Under the BSMIAJ, Mancini 
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(2009) and Bollerslev and Todorov (2011) suggest using the truncated power variation TVt to consistently 

estimate IVt. TVt is defined as follows: 

TVt (Δ)  ≡  ∑ (𝑟𝑡,𝑖 )
21𝑀

𝑖=1 1|𝑟𝑡,𝑖|≤𝑔(𝛥)�̃�   
𝑝
→  ∫ 𝜎2𝑡

𝑡−1
(𝑠)𝑑𝑠,                                          (16) 

where g > 0 and �̃�∈(0, 1/2) are the thresholds for truncating the returns. TVt eliminates the large returns 

and retains those that are lower than the specified thresholds. In the LH test, the typical values for g and �̃� 

are 3 (or 4) and 0.47, respectively. Now we can derive three robust nonparametric estimators 

𝑆𝑡,𝑖
𝐿�̂�𝑓𝑡,𝑖

𝑀𝐴�̂�,
̂

𝑆𝑡,𝑖
𝐿�̂�𝑓𝑡,𝑖

𝑆ℎ𝑜𝑟𝑡𝐻̂
 , and 𝑆𝑡,𝑖

𝐿�̂�𝑓𝑡,𝑖
𝑊𝑆�̂� to estimate 𝜎𝑡,�̂�  and the Lee and Hannig (LH) jump statistics as 

follows: 

   𝐿𝐻 𝐼𝐷𝐽𝑡,𝑖
𝑀𝐴𝐷  =  

|𝑟𝑡,𝑖|

𝑆𝑡,𝑖
𝐿�̂�𝑓𝑡,𝑖

𝑀𝐴�̂�
=   

|𝑟𝑡,𝑖|√
1

𝑀−1
∑ 𝑀𝐴𝐷𝑡,𝑖

2𝑀
𝑗=1

𝑆𝑡,𝑖
𝐿�̂�𝑀𝐴𝐷𝑡,𝑖

                                                      (17) 

               𝐿𝐻 𝐼𝐷𝐽𝑡,𝑖
𝑆ℎ𝑜𝑡𝑟𝐻  =  

|𝑟𝑡,𝑖|

𝑆𝑡,𝑖
𝐿�̂�𝑓𝑡,𝑖

𝑆ℎ𝑜𝑟𝑡𝐻̂ =   
|𝑟𝑡,𝑖|√

1

𝑀−1
∑ 𝑆ℎ𝑜𝑟𝑡𝐻𝑡,𝑖

2𝑀
𝑗=1

𝑆𝑡,𝑖
𝐿�̂�𝑆ℎ𝑜𝑟𝑡𝐻𝑡,𝑖

                                               (18) 

               𝐿𝐻 𝐼𝐷𝐽𝑡,𝑖
𝑊𝑆𝐷  =  

|𝑟𝑡,𝑖|

𝑆𝑡,𝑖
𝐿�̂�𝑓𝑡,𝑖

𝑊𝑆�̂�
=   

|𝑟𝑡,𝑖|√
1

𝑀−1
∑ 𝑊𝑆𝐷𝑡,𝑖

2𝑀
𝑗=1

𝑆𝑡,𝑖
𝐿�̂�𝑊𝑆𝐷𝑡,𝑖

                                                          (19) 

 

3.3.4.  Laurent and Shi Test using the Median 

However, Laurant and Shi (2020) showed that despite the fact that the linear drift process falls within the 

general asset price specification of Lee and Mykland (2008), the infinite sample performance of their test 

for additive jumps under this data-generating process is far from satisfactory.2 Indeed, when asset prices 

deviate locally from the random walk, the test shows a strong size distortion and dramatic power loss.  

Laurent and Shi (2020) proposed an alternative construction of a test that does not deteriorate its 

performance in the random walk case but significantly improves the performance. Specifically, the authors 

showed that their test allows the detection of jumps with or without jumps when log prices exhibit clear 

upward or downward trend movements, which invalidate the use of bipower variation. Therefore, we use 

the Laurent and Shi (LS) jump statistics as follows: 

𝐽𝑡,𝑖
𝐿𝑆   =   

| 𝑟𝑡,𝑖 − �̂�𝑡,𝑖 |

�̂�𝑡,𝑖
𝐿𝑆 ,                                                                       (20) 

where �̂�𝑡,𝑖 is an estimate of the empirical mean obtained from the same set of observations as �̂�𝑡,𝑖. 

�̂�𝑡,𝑖
𝐿𝑆   =   �̂�𝑡,𝑖

𝐿𝑆   = √
1

𝑀−1
𝐵𝑉𝑡

𝐿𝑆,                                                                                (21) 

where 𝐵𝑉𝑡
𝐿𝑆 corresponds to the bipower variation computed on log-returns centered by �̂�𝑡,𝑖. Laurent and 

Shi (2020) proposed using the median instead of the empirical mean for �̂�𝑡,𝑖. Indeed, while the empirical 
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mean has a breakdown point of 0%, the median has a breakdown point of 50%, and therefore, is robust to 

jumps. When this LS statistic is selected, spot volatility is multiplied by an estimate of the periodicity. 

Similarly, we can derive the three robust nonparametric estimators 𝑆𝑡,𝑖
𝐿�̂�𝑓𝑡,𝑖

𝑀𝐴�̂� ,
̂

𝑆𝑡,𝑖
𝐿�̂�𝑓𝑡,𝑖

𝑆ℎ𝑜𝑟𝑡𝐻̂
, and 𝑆𝑡,𝑖

𝐿�̂�𝑓𝑡,𝑖
𝑊𝑆�̂�to 

estimate 𝜎𝑡,�̂� and the Laurent and Shi (LS) jump  statistics as follows: 

            𝐿𝑆 𝐼𝐷𝐽𝑡,𝑖
𝑀𝐴𝐷  =  

|𝑟𝑡,𝑖− �̂�𝑡,𝑖|

𝑆𝑡,𝑖
𝐿�̂�𝑓𝑡,𝑖

𝑀𝐴�̂�
=   

|𝑟𝑡,𝑖− �̂�𝑡,𝑖|√
1

𝑀−1
∑ 𝑀𝐴𝐷𝑡,𝑖

2𝑀
𝑗=1

𝑀𝐴𝐷𝑡,𝑖√
1

𝑀−1
𝐵𝑉𝑡

𝐿𝑆
                                                      (22) 

            𝐿𝑆 𝐼𝐷𝐽𝑡,𝑖
𝑆ℎ𝑜𝑡𝑟𝐻  =  

|𝑟𝑡,𝑖− �̂�𝑡,𝑖|

𝑆𝑡,𝑖
𝐿�̂�𝑓𝑡,𝑖

𝑆ℎ𝑜𝑟𝑡𝐻̂ =   
|𝑟𝑡,𝑖− �̂�𝑡,𝑖

|√
1

𝑀−1
∑ 𝑆ℎ𝑜𝑟𝑡𝐻𝑡,𝑖

2𝑀
𝑗=1

𝑆ℎ𝑜𝑟𝑡𝐻𝑡,𝑖√
1

𝑀−1
𝐵𝑉𝑡

𝐿𝑆
                                  (23) 

              𝐿𝑆 𝐼𝐷𝐽𝑡,𝑖
𝑊𝑆𝐷    =  

|𝑟𝑡,𝑖|

𝑆𝑡,𝑖
𝐿�̂�𝑓𝑡,𝑖

𝑊𝑆�̂�
=   

|𝑟𝑡,𝑖− �̂�𝑡,𝑖
|√

1

𝑀−1
∑ 𝑊𝑆𝐷𝑡,𝑖

2𝑀
𝑗=1

𝑊𝑆𝐷𝑡,𝑖√
1

𝑀−1
𝐵𝑉𝑡

𝐿𝑆
                                        (24) 

 

IV. Empirical Results  

 

4.1 Data 

Our empirical analysis is based on data from Olsen and Associates in Zurich, Switzerland. The dataset 

consists of five-minute observations on the Korean won–U.S. dollar exchange rate from June 1, 2010, to 

April 30, 2021. All volatility measures are based on the five-minute returns as the first difference of the 

logarithm of the Korean won–U.S. dollar exchange rate, which results in a total of M(=
1

∆
) = 288 high-

frequency return observations per day, that is, ∆ =
1

288
. This five-minute interval is short enough for the 

underlying realized volatility measures to work well as well as long enough for market micro frictions to 

not overwhelm the process.  

Next, weekend holidays and several fixed holidays and July 4th, are removed. Moreover, the moving 

holidays of Good Friday, Easter Monday, Memorial Day, Labor Day, and Thanksgiving are also eliminated, 

as well as the days immediately after, in order to remove the holiday effects, following Andersen et al. 

(2001). Finally, we have a total of 3,304 days. The corresponding daily returns of Korean won–U.S. dollar 

for these days can be represented as 𝑟𝑡+1 ≡ 𝑟𝑡+1,1 ≡ 𝑟𝑡+Δ,Δ + 𝑟𝑡+2Δ,Δ + ⋯ + 𝑟𝑡+1,Δ, 𝑡 = 1, 2, ⋯, 3,304 . 

Therefore, we have 951,552 (= 3,304 × 288) sample observations. 

  

4.2 Basic Statistics and Density Function Distribution 

Table 1 shows the basic statistics of the realized returns (RR), realized variances (RV), realized bipower 

variation (BV), and realized jumps by BV (RJ_BV) for the Korean won–U.S. dollar exchange rate using 
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realized bipower variation (BV) at α = 0.999.  

 

 

 

 

 

 

Table 1. Basic Statistics 

Variable min mean max std.dev 

RR 0.029893 -0.00010017 0.037691 0.0053144 

RV 7.0392e-11 0.00012082 0.0063475 0.00021004 

BV(0.999) 0 0.0001054 0.0037839 0.00017039 

RJ_BV(0.999)     0 1.5419e-05 0.0025637 6.246e-05 

“Min” represents minimum values, “mean” represents the average, “max” represents maximum values, and “std.dev” 

represents the standard deviation. The number in parentheses denote the significance levels. 

 

  

4.3. Volatility and Jump Distribution 

Figure 1 presents the graphs of the volatility of RR (top left panel), RV (top right), RJ_BV (bottom left), 

and the L-M realized jumps (LM_RJ) (bottom right) by outlying weighted quarticity using frequency 

periodicity at a 0.01% significance level. Figure 1 also shows the stylized volatility clustering effects and 

dynamic dependence of the returns of the Korean won–U.S. dollar in this period. 

Figure 1 presents the graphs of the volatility of RR, RV, the realized jumps by BV (RJ_B BV), and the 

realized jumps (LM_RJ) by outlying weighted quarticity using frequency periodicity at a 0.01%  significant 

level.In the top left panel, the RR of the Korean won–U.S. dollar exchange rate appeared volatile around 

zero, and some large jumps occurred during 2010–2011 and 2012, amid the Euro crisis, 2015–2016, and 

2020. The RV (top right panel in Figure 1) of the Korean won–U.S. dollar exchange rate also shows 

extraordinary volatility in the second half of 2012 and 2014. Hence, RJ_BV (bottom left panel in Figure 1) 

occurred in the second half of 2012 and 2014. Extremely large jumps occurred particularly during 2012. 

However, LM_RJ (bottom right panel) using frequency periodicity occurred more frequently in the second 

half of 2010, 2012, 2015, 2017, and 2020.  

While the size of RJ_BV for the Korean won–U.S. dollar became very smooth after the second half of 

2014, LM_RJ using frequency periodicity occurred frequently even in and after 2014, in particular, in 2016 
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and 2020. Therefore, the volatility of the Korean won–U.S. dollar exchange rate returns should include not 

only continuous volatility but also a significant discrete jump volatility process, as stated by Andersen, 

Bollerslev, and Diebold (2007). 

 

 

 

 

Figure 1.  Volatility and Jump Distribution 

 

 

4.4. Intraday LM jump Test using the Local Robust Variance with Periodicity Filters 

This subsection examines the intraday jump probability instead of the daily jump probability, both with and 

without periodicity filter cases.  We use intraday observations (𝑛 = 𝑀𝑇 = 951,552).  

To obtain the intraday LM jump statistics, we use the 951,552 intraday observations of Korean won–U.S. 
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dollar exchange rates from June 1, 2010, to April 30, 2021. Table 6 shows the results when we use the local 

robust variance (Average BV) with the jump statistics at the 𝛼 = 0.990, 𝛼 = 0.995, and 𝛼 = 0.999 critical 

levels. Table 2 reports the intraday jump detection probability with returns with the no periodicity window 

and filters using intraday observations for the intraday jump statistics.  

First, at the critical level 𝛼 = 0.999 (𝛷𝛼 = 6.20451), 3,048 jumps were detected with the no periodicity 

window. At least one significant jump occurred on 1,254, or 37.95%, days out of a total of 3,304 days. 

In the case of jump detection probability with filtered returns with MAD periodicity, 2,792 jumps were 

detected. At least one significant jump occurred on 1,091, or 33.029%, days out of 3,304 days. In the case 

of ShortH, 2,372 jumps were detected. At least one significant jump occurred on 867, or 26.24%, days. In 

the case of WSD, 2,288 jumps were detected. At least one significant jump occurred on 882, or 26.69%, 

days. 

 

Table 2.  Intraday LM Jump Probability using Local Robust Variance: Intraday Observations 

Jump and Critical Value No Filter 
Intraday LM Jump  

with Periodicity Filters 

a (𝜶 = 0.999) LM 𝐼𝐷𝐽𝑡,𝑖 LM 𝐼𝐷𝐽𝑡,𝑖
𝑀𝐴𝐷 𝐿𝑀 𝐼𝐷𝐽𝑡,𝑖

𝑆ℎ𝑜𝑟𝑡𝐻 𝐿𝑀 𝐼𝐷𝐽𝑡,𝑖
𝑊𝑆𝐷 

Critical value, i.e. G(Beta)*Sn+Cn 6.20451 6.20451 6.20451 6.20451 

Number of detected jumps 3048 2792 2372 2288 

probability of jumps 0.00320319 0.00293415 0.00249277 0.00240449 

Number of periods (typically days) with 

at least one significant jump 
1254 1091 867 882 

Proportion of periods with at least one 

significant jump 
0.37954 0.330206 0.262409 0.266949 

Expected number of spurious detected 

jumps (under H0=no jumps) 
0.001 0.001 0.001 0.001 

b (𝜶 = 0.995) LM 𝐼𝐷𝐽𝑡,𝑖 𝐿𝑀 𝐼𝐷𝐽𝑡,𝑖
𝑀𝐴𝐷 𝐿𝑀 𝐼𝐷𝐽𝑡,𝑖

𝑆ℎ𝑜𝑟𝑡𝐻 𝐿𝑀 𝐼𝐷𝐽𝑡,𝑖
𝑊𝑆𝐷 

Critical value, i.e. G(Beta)*Sn+Cn 5.8974 5.8974 5.8974 5.8974 

detected number of jumps 3563 3331 2821 2716 

Proportion of detected jumps 0.00374441 0.0035006 0.00296463 0.00285428 

Number of periods (typically days) with 

at least one significant jump 
1382 1229 980 989 

Proportion of periods with at least one 

significant jump 
0.418281 0.371973 0.296610 0.299334 

Expected number of spurious detected 

jumps (under H0=no jumps) 
0.005 0.005 0.005 0.005 

c (𝜶 = 0.990) 𝐿𝑀 𝐼𝐷𝐽𝑡,𝑖 𝐿𝑀 𝐼𝐷𝐽𝑡,𝑖
𝑀𝐴𝐷 LM 𝐼𝐷𝐽𝑡,𝑖

𝑆ℎ𝑜𝑟𝑡𝐻 LM 𝐼𝐷𝐽𝑡,𝑖
𝑊𝑆𝐷 
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Critical value, i.e. G(Beta)*Sn+Cn 4.5113 4.5113 4.5113 4.5113 

Number of detected jumps 3830 3572 3031 2930 

Proportion of detected jumps 0.004025 0.00375387 0.00318532 0.00307918 

Number of periods (typically days) with 

at least one significant jump 
1453 1294 1032 1033 

Proportion of periods with at least one 

significant jump 
0.43977 0.391646 0.312349 0.312651 

Expected number of spurious detected 

jumps (under H0=no jumps) 
0.01 0.01 0.01 0.01 

Second, at 𝛼 = 0.995 (𝛷𝛼 = 4.51132), 3,563 jumps were detected with the no periodicity window. At 

least one significant jump occurred on 1,382, or 41.82%, days out of 3,304 days. In the case of jump 

detection probability with filtered returns with MAD, 3,331 jumps were detected. At least one significant 

jump occurred on 1,229, or 37.20%, days out of 3,304 days. In the case of ShortH, 784 jumps were detected. 

At least one significant jump occurred on 980, or 29.66%, days. In the case of WSD, at least one significant 

jump occurred on 989, or 29.93%, days.  

Third, at 𝛼 = 0.990 (𝛷𝛼 = 4.5113), 3,830 jumps were detected with the no periodicity window. At least 

one significant jump occurred on 1,453, or 43.98%, days.  In the case of the jump detection probability with 

filtered returns with MAD, 3,572 jumps were detected. At least one significant jump occurred on 1,294, or 

39.16%, days out of 3,304 days. With ShortH, 3,031 jumps were detected. At least one significant jump 

occurred on 1,032, or 31.23%, days. In the case of WSD, 2,930 jumps were detected. At least one significant 

jump occurred on 1,033, or 31.27%, days.  

Therefore, we can infer that if periodicity filters are not considered, the intraday jump detection 

probability is significantly higher than when periodicity filters such as MAD, ShortH, and WSD are used. 

 

4.5. Intraday Lee-Hannig Jump Test using Local Robust Variance 

 

To obtain the intraday LH jump statistics, we use the 951,552 intraday observations of Korean won–U.S. 

dollar exchange rates from June 1, 2010, to April 30, 2021. Table 3 presents the jump statistics at the 𝛼 = 

0.990, 𝛼  = 0.995, and 𝛼  = 0.999 critical levels. It reports the intraday jump detection probability with 

returns with the no periodicity window and filters using intraday observations for the intraday jump 

statistics.  

First, at the critical level 𝛼 = 0.999 (𝛷𝛼 = 6.20451), 1, 987 jumps were detected with the no periodicity 

window. At least one significant jump occurred on 1,010, or 30.57%, days out of 3,304 days. In the case of 

jump detection probability with filtered returns with MAD periodicity, 1,750 jumps were detected. At least 

one significant jump occurred on 868, or 26.27%, days out of 3,304 days. In the case of ShortH, 1,489 
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jumps were detected. At least one significant jump occurred on 689, or 20.85%, days. In the case of WSD, 

1,477 jumps were detected. At least one significant jump occurred on 702, or 21.25%, days. 

Second, at 𝛼 = 0.995 (𝛷𝛼 = 4.51132), 2,366 jumps were detected with the no periodicity window. At 

least one significant jump occurred on 1,136, or 34.38%, days out of 3,304 days. In the case of jump 

detection probability with filtered returns with MAD, 2,146 jumps were detected. At least one significant 

jump occurred on 1,021, or 30.9%, days out of 3,304 days. In the case of ShortH, 1,806 jumps were detected. 

At least one significant jump occurred on 797, or 24.12%, days. In the case of WSD, 1,760 jumps were 

detected, and at least one significant jump occurred on 798, or 24.15%.  

 

Table 3.  Intraday LH Jump Probability using Local Robust Variance: Intraday Observations 

Jump and Critical Value No Filter 
Intraday LH Jump  

with Periodicity Filters 

a (𝜶 = 0.999) LH 𝐼𝐷𝐽𝑡,𝑖 LH 𝐼𝐷𝐽𝑡,𝑖
𝑀𝐴𝐷 LH 𝐼𝐷𝐽𝑡,𝑖

𝑆ℎ𝑜𝑟𝑡𝐻 LH 𝐼𝐷𝐽𝑡,𝑖
𝑊𝑆𝐷 

Critical value, i.e. G(Beta)*Sn+Cn 6.20451 6.20451 6.20451 6.20451 

Number of detected jumps 1987 1750 1489 1477 

Proportion of detected jumps 0.00208817 0.0018391 0.00156481 0.0015522 

Number of periods (typically days) with at 

least one significant jump 
1010 868 689 702 

Proportion of periods with at least one 

significant jump 
0.30569 0.262712 0.208535 0.21247 

Expected number of spurious detected 

jumps (under H0=no jumps) 
0.001 0.001 0.001 0.001 

b (𝜶 = 0.995) LH 𝐼𝐷𝐽𝑡,𝑖 LH 𝐼𝐷𝐽𝑡,𝑖
𝑀𝐴𝐷 LH 𝐼𝐷𝐽𝑡,𝑖

𝑆ℎ𝑜𝑟𝑡𝐻 LH 𝐼𝐷𝐽𝑡,𝑖
𝑊𝑆𝐷 

Critical value, i.e. G(Beta)*Sn+Cn 4.51132 4.51132 4.51132 4.51132 

detected number of jumps 2366 2146 1806 1760 

Proportion of detected jumps 0.00248646 0.00225526 0.00189795 0.00184961 

Number of periods (typically days) with at 

least one significant jump 
1136 1021 797 798 

Proportion of periods with at least one 

significant jump 
0.343826 0.309019 0.241223 0.241525 

Expected number of spurious detected 

jumps (under H0=no jumps) 
0.005 0.005 0.005 0.005 

c (𝜶 = 0.990) LH 𝐼𝐷𝐽𝑡,𝑖 LH 𝐼𝐷𝐽𝑡,𝑖
𝑀𝐴𝐷 LH 𝐼𝐷𝐽𝑡,𝑖

𝑆ℎ𝑜𝑟𝑡𝐻 LH 𝐼𝐷𝐽𝑡,𝑖
𝑊𝑆𝐷 

Critical value, i.e. G(Beta)*Sn+Cn  4.3046   

Number of detected jumps 2571 2336 1986 1915 

Proportion of detected jumps 0.0027019 0.00245494 0.00208712 0.0020125 
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Number of periods (typically days) with at 

least one significant jump 
1198 1083 854 855 

Proportion of periods with at least one 

significant jump 
0.362591 0.327785 0.258475 0.258777 

Expected number of spurious detected 

jumps (under H0=no jumps) 
0.01 0.01 0.01 0.01 

 

Third, at 𝛼 = 0.990 (𝛷𝛼 = 4.3046), 2,571 jumps were detected with the no periodicity window. At least 

one significant jump occurred on 1,198, or 36.26%, days out of 3,304 days. In the case of jump detection 

probability with filtered returns with MAD, 2,336 jumps were detected. At least one significant jump 

occurred on 1,083, or 32.78%, days out of 3,304 days. With ShortH, 1,986 jumps were detected. At least 

one significant jump occurred on 854, or 25.85%, days. In the case of WSD, 1,915 jumps were detected. At 

least one significant jump occurred on 855, or 25.88%, days.  

Therefore, we can infer that if periodicity filters with the LH test are not considered, the intraday jump 

detection probability is significantly lower than when periodicity filters with the LH test are considered, 

such as MAD, ShortH, and WSD. 

The use of periodicity filters with the LH test can help obtain increasingly robust and consistent 

estimators of volatility jumps and jump probabilities of Korean won–U.S. dollar exchange rates; this is in 

contrast to Barndorff-Nielsen and Shephard (2004a, 2004b, 2005a, 2005b, 2006) and Andersen, Bollerslev, 

and Diebold (2007), who did not consider the periodicity window factors of volatility nor the increasingly 

efficient outlying weighted variances. 

 

4.6. Intraday Laurent-Shi Jump Test using Local Robust Variance 

 

To obtain the intraday LS jump statistics, we use the 951,552 intraday observations of Korean won–U.S. 

dollar exchange rates from June 1, 2010, to April 30, 2021. Table 4presents the jump statistics at the 𝛼 = 

0.990, 𝛼  = 0.995, and 𝛼  = 0.999 critical levels. It reports the intraday jump detection probability with 

returns with the no periodicity window and filters using intraday observations for the intraday jump 

statistics.  

First, at the critical level 𝛼 = 0.999 (𝛷𝛼 = 6.20451), 3,050 jumps were detected with no periodicity 

window. At least one significant jump occurred on 1,010, or 38.01%, days out of a total of 3,304 days. In 

the jump detection probability with filtered returns with MAD periodicity, 2,869 jumps were detected. At 

least one significant jump occurred on 1,116, or 33.78%, days out of 3,304 days. In the case of ShortH, 

2,788 jumps were detected. At least one significant jump occurred on 1,054, or 31.90%, days. In the case 

of WSD, 2,362 jumps were detected. At least one significant jump occurred on 899, or 27.20%, days. 
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Second, at 𝛼 = 0.995 (𝛷𝛼 = 4.51132), 3,563 jumps were detected with the no periodicity window. At 

least one significant jump occurred on 1,382, or 41.82%, days out of 3,304 days. In the jump detection 

probability with filtered returns with MAD, 3,383 jumps were detected. At least one significant jump 

occurred on 1,248, or 37.77%, days out of 3,304 days. In the case of ShortH, 3,304 jumps were detected. 

At least one significant jump occurred on 1,177, or 35.62%, days. In the case of WSD, 2,792 jumps were 

detected, and at least one significant jump occurred on 1,013, or 30.66%, days.  

 

Table 4. Intraday LS Jump Probability using Local Robust Variance: Intraday Observations 

Jump and Critical Value No Filter 
Intraday LS Jump  

with Periodicity Filters 

a (𝜶 = 0.999) 𝐿𝑆 𝐼𝐷𝐽𝑡,𝑖 LS 𝐼𝐷𝐽𝑡,𝑖
𝑀𝐴𝐷 LS 𝐼𝐷𝐽𝑡,𝑖

𝑆ℎ𝑜𝑟𝑡𝐻 LS 𝐼𝐷𝐽𝑡,𝑖
𝑊𝑆𝐷 

Critical value, i.e. G(Beta)*Sn+Cn 6.20451 6.20451 6.20451 6.20451 

Number of detected jumps 3050 2869 2788 2362 

probability of jumps 0.00320529 0.00301507 0.00292995 0.00248226 

Number of periods (typically days) with 

at least one significant jump 
1256 1116 1054 899 

Proportion of periods with at least one 

significant jump 
0.380145 0.337772 0.319007 0.272094 

Expected number of spurious detected 

jumps (under H0=no jumps) 
0.001 0.001 0.001 0.001 

b (𝜶 = 0.995) 𝐿𝑆 𝐼𝐷𝐽𝑡,𝑖 LS 𝐼𝐷𝐽𝑡,𝑖
𝑀𝐴𝐷 𝐿𝑆 𝐼𝐷𝐽𝑡,𝑖

𝑆ℎ𝑜𝑟𝑡𝐻 LS 𝐼𝐷𝐽𝑡,𝑖
𝑊𝑆𝐷 

Critical value, i.e. G(Beta)*Sn+Cn 4.51132 4.51132 4.51132 4.51132 

detected number of jumps 3563 3383 3304 2792 

Proportion of detected jumps 0.00374441 0.00355524 0.00347222 0.00293415 

Number of periods (typically days) with 

at least one significant jump 
1382 1248 1177 1013 

Proportion of periods with at least one 

significant jump 
0.418281 0.377724 0.356235 0.306598 

Expected number of spurious detected 

jumps (under H0=no jumps) 
0.005 0.005 0.005 0.005 

c (𝜶 = 0.990) 𝐿𝑆 𝐼𝐷𝐽𝑡,𝑖 𝐿𝑆 𝐼𝐷𝐽𝑡,𝑖
𝑀𝐴𝐷 LS 𝐼𝐷𝐽𝑡,𝑖

𝑆ℎ𝑜𝑟𝑡𝐻 𝐿𝑆 𝐼𝐷𝐽𝑡,𝑖
𝑊𝑆𝐷 

Critical value, i.e. G(Beta)*Sn+Cn 4.3046 4.3046 4.3046 4.3046 

Number of detected jumps 3830 3634 3552 3022 

Proportion of detected jumps 0.004025 0.00381902 0.00373285 0.00317586 

Number of periods (typically days) with 

at least one significant jump 
1453 1307 1235 1064 
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Proportion of periods with at least one 

significant jump 
0.43977 0.395581 0.373789 0.322034 

Expected number of spurious detected 

jumps (under H0=no jumps) 
0.01 0.01 0.01 0.01 

 

Third, at 𝛼 = 0.990 (𝛷𝛼 = 4.30461), 3,830 jumps were detected with the no periodicity window. At least 

one significant jump occurred on 1,453, or 43.98%, days out of 3,304 days. With the jump detection 

probability with filtered returns with MAD, 3,634 jumps were detected. At least one significant jump 

occurred on 1,307, or 39.56%, days out of 3,304 days. In the case ShortH, 3,552 jumps were detected. At 

least one significant jump occurred on 1,235, or 37.38%, days. With WSD, 3,022 jumps were detected. At 

least one significant jump occurred on 1,064, or 32.20%, days.  

Therefore, we can infer that if periodicity filters with the LS jump test are not considered, the intraday 

jump detection probability is significantly lower than when periodicity filters with the LS test are 

considered, such as MAD, ShortH, and WSD. 

 

4.7. Combined Lee-Hannig and Laurent-Shi Intraday Jump Test 

 

To obtain the combined intraday LH and LS jump statistics using local robust variance (average truncated 

power variation) with parameters g = 4 and omega = 0.47, we use the 951,552 intraday observations of 

Korean won–U.S. dollar exchange rates from June 1, 2010, to April 30, 2021. Table 5 presents the jump 

statistics at the 𝛼 = 0.990, 𝛼 = 0.995, and 𝛼 = 0.999 critical levels. It reports the intraday jump detection 

probability with returns with the no periodicity window and filters using intraday observations for the 

intraday jump statistics.  

 

Table 8. Intraday LH and LS Jump Probability using Local Robust Variance: Intraday Observations 

Jump and Critical Value No Filter 
Intraday LH and LS Jump  

with Periodicity Filters 

a (𝜶 = 0.999) 𝐼𝐷𝐽𝑡,𝑖 LHLS 𝐼𝐷𝐽𝑡,𝑖
𝑀𝐴𝐷 LHLS 𝐼𝐷𝐽𝑡,𝑖

𝑆ℎ𝑜𝑟𝑡𝐻 𝐿𝐻𝐿𝑆 𝐼𝐷𝐽𝑡,𝑖
𝑊𝑆𝐷 

Critical value, i.e. G(Beta)*Sn+Cn 6.20451 6.20451 6.20451 6.20451 

Number of detected jumps 1986 1802 1713 1534 

Proportion of detected jumps 0.00208712 0.00189375 0.00180022 0.0016121 

Number of periods (typically days) with at 

least one significant jump 
1010 890 820 723 

Proportion of periods with at least one 

significant jump 
0.30569 0.26937 0.248184 0.218826 
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Expected number of spurious detected 

jumps (under H0=no jumps) 
0.001 0.001 0.001 0.001 

b (𝜶 = 0.995) 𝐼𝐷𝐽𝑡,𝑖 𝐿𝐻𝐿𝑆 𝐼𝐷𝐽𝑡,𝑖
𝑀𝐴𝐷 𝐿𝐻𝐿𝑆 𝐼𝐷𝐽𝑡,𝑖

𝑆ℎ𝑜𝑟𝑡𝐻 𝐼𝐷𝐽𝑡,𝑖
𝑊𝑆𝐷 

Critical value, i.e. G(Beta)*Sn+Cn 4.51132 4.51132 4.51132 4.51132 

detected number of jumps 2367 2201 2097 1833 

Proportion of detected jumps 0.00248752 0.00231306 0.00220377 0.00192633 

Number of periods (typically days) with at 

least one significant jump 
1137 1043 961 823 

Proportion of periods with at least one 

significant jump 
0.344128 0.315678 0.29086 0.249092 

Expected number of spurious detected 

jumps (under H0=no jumps) 
0.005 0.005 0.005 0.005 

c (𝜶 = 0.990) 𝐼𝐷𝐽𝑡,𝑖 LHLS 𝐼𝐷𝐽𝑡,𝑖
𝑀𝐴𝐷 𝐿𝐻𝐿𝑆 𝐼𝐷𝐽𝑡,𝑖

𝑆ℎ𝑜𝑟𝑡𝐻 LHLS 𝐼𝐷𝐽𝑡,𝑖
𝑊𝑆𝐷 

Critical value, i.e. G(Beta)*Sn+Cn 4.30461 4.30461 4.30461 4.30461 

Number of detected jumps 2570 2391 2298 1992 

Proportion of detected jumps 0.00270085 0.00251274 0.002415 0.00209342 

Number of periods (typically days) with at 

least one significant jump 
1198 1099 1026 877 

Proportion of periods with at least one 

significant jump 
0.362591 0.332627 0.310533 0.265436 

Expected number of spurious detected 

jumps (under H0=no jumps) 
0.01 0.01 0.01 0.01 

 

First, at the critical level 𝛼 = 0.999 (𝛷𝛼 = 6.20451), 1,986 jumps were detected with the no periodicity 

window. One significant jump occurred on 1,010, or 30.57%, days out of 3,304 days. In the jump detection 

probability with filtered returns with MAD periodicity, 1,802 jumps were detected. At least one significant 

jump occurred on 890, or 26.94%, days out of 3,304 days. In the case of ShortH, 1,713 jumps were detected. 

At least one significant jump occurred on 820, or 24.82%, days. In the case of WSD, 1,534 jumps were 

detected. At least one significant jump occurred on 723, or 21.88%, days. 

Second, at 𝛼 = 0.995 (𝛷𝛼 = 4.51132), 2,367 jumps were detected with the no periodicity window. One 

significant jump occurred on 1,137, or 34.41%, days out of 3,304 days. In the jump detection probability 

with filtered returns with MAD, 2,201 jumps were detected. At least one significant jump occurred on 

1,043, or 31.57%, days out of 3,304 days. In the case of ShortH, 2,097 jumps were detected. At least one 

significant jump occurred on 961, or 29.09%, days. In the case of WSD, 1,833 jumps were detected, and at 

least one significant jump occurred on 823, or 24.91%, days.  

Third, at 𝛼 = 0.990 (𝛷𝛼 = 4.30461), 2,570 jumps were detected with the no periodicity window. At least 
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one significant jump occurred on 1,198, or 36.26%, days out of 3,304 days. In the jump detection probability 

with filtered returns with MAD, 2,391 jumps were detected. At least one significant jump occurred on 

1,099, or 33.27%, days out of 3,304 days. In the case of ShortH, 2,298 jumps were detected. At least one 

significant jump occurred on 1,026, or 31.05%, days. In the case of WSD, 1,992 jumps were detected. At 

least one significant jump occurred on 877, 26.54%, days.  

Therefore, we can infer that if periodicity filters such as MAD, ShortH, and WSD are used, the intraday 

jump detection probability is significantly lower than when periodicity filters with the combined intraday 

LH and LS test are considered.  

 

V. Conclusion 

This study analyzes the realized volatility and discrete jump volatility of Korean won–U.S. dollar exchange 

rate returns using high-frequency five-minute returns from June 1, 2010, to April 30, 2021. We consider 

several periodicity filters, such as MAD, ShortH, and WSD, to obtain increasingly efficient and robust jump 

estimators. We estimate the volatility and jumps using the maximum outlyingness and local robust variance 

with truncated power variation. Although most studies adopted the standard normal Z-type jump statistics 

of the standard normal distribution, we adopt the Gumbel distribution to determine whether a significant 

daily and intraday jump occurs.  

Therefore, overall, when we utilize MAD, ShortH, and WSD, the five-minute returns of Korean won–

U.S. dollar exchange rates have considerably lower daily and intraday jump probabilities. If the periodicity 

filters of volatility are not considered, the jump probabilities may be overestimated.  

For a more robust analysis, while expensive, future studies can consider using longer periods and 

exchange rate data from several countries. Furthermore, considering the influencing factors such as 

economic events and psychological traits can yield noteworthy results for volatility and jumps in Korean 

won–U.S. dollar exchange rates during the 2010s.  
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