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  Yes, it can. Employing a variety of Machine Learning (ML) algorithms, we predict optimal 
capital structure of listed firms in Korea, comparing the performance of linear and machine 
learning models - namely, Multi-regression, LASSO, Random Forest (RF) and Gradient 
Boosting Regression (GBM). For analysis, we set the training and test set as 2003-2014 and 
2015-2019 respectively. We find that the predicting performance on firm leverage, as 
measured in out- ROS2  and MSE (Mean Square Error) for RF and GBM is much effective than 
that of LM and LASSO. In particular, the variables with high predictive power are the 
Market-to-Book ratio, NetPay, Z-score, Profit, and so on. Finally, after estimating the speed 
of adjustment (SOA) to the optimal capital structure, using the model of Amini et al. (2021), 
we confirm that RF and GBM are more predictive than LM and LASSO. Lastly, when 
chaebols, unique form of conglomerate in Korea, compared with non-chaebols, we find that 
the leverage adjustment speed of latter is much faster than that of the former especially in 
machine learning models which is due to the debt-dependent characteristic of chaebols.
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1. Introduction

The determinants of capital structure have been a subject of discussion for last decades 
(Aybar-Aria, 2012; Baker et al., 2002; Fama et al., 2002; Flannery et al., 2006; Frank et al., 2004; 
Frank et al., 2009; Morellec, 2004; Myers, 1984). Despite extensive debate and research over 
last decades, the factors causing variations in capital structure remain a puzzle in developing 
countries including Korea (Choi, 2015; Kim et al., 2007; Lee et al, 2000; Son et al, 2007; Yoon, 
2016). In fact, the capital structure and leverage of firms in Korea has been a significant 
matter of debate since the 1997 Asian Financial Crisis. The excessive investment, encouraged 
by financial institutions’ lending led to low profitability and high leverage of these firms 
(Lee et al., 2000), which became a structural problem that caused the entire economy 
vulnerable. Among the firms, chaebols, unique form of conglomerates with historical ties to 
Korean government, are known to have extremely high leverages when compared to other 
firms. In this context, to better observe the speed of leverage adjustment of Korean firms 
since the 1997 Asian Financial Crisis, it is important to analyze Korean firms in two 
categories – chaebols and non-chaebols – to better observe dynamics in capital structure which 
would be unique to Korean business environment.
 In particular, in contrast to previous researches, our study employs machine learning 
methodologies including Random Forests (RF), Gradient Boosting Machines (GBM) and 
Least Absolute Shrinkage and Select Operator (LASSO) models to address nonlinearities and 
interaction effects raised by previous researches in explaining the capital structure of Korean 
firms. We exploit a large sample which comprises 6,545 firm-year observations from 2003 to 
2014, which split into 1,454 chaebols and 5,101 non-chaebols, and then use a training and cross-
validation period from 2015 to 2019. Then, we assess out-of-sample R-squared 
(hereafter ROS2 )and out−of−sample mean squared forecast error (MSE) from 2015 to 2020 in 
order to assess the predictive power of our machine learning models relative to conventional 
linear models in measuring target leverages and evaluating their determinants. 
Subsequently, we estimate the speed of adjustment to target leverage and analyze whether 
machine learning models better predict observed firms’ financing actions than traditional 
linear models.
 The results of our analysis are as follows. First, our machine learning approach achieves 
substantial gains in estimating target leverage, ROS2  statistics are −26.42% and −12.78% for OLS 
and LASSO over the testing period (2015-2019), compared to 55.29% and 52.85% for RF and 
GBM respectively. Thus, it seems clear that RF and GBM outperform linear models and lead 
to lower error every year in the testing period, especially for firm-fixed model. Moreover, 
machine learning models are found to significantly reduce MSE (Mean Square Error). For 
instance, RF and GBM lead to a 2.4% and 2.6% decline in MSE, compared to 14.9% and 12.66% 
in OLS and LASSO respectively.
 Then, we turn to the assessment of the most important determinants of corporate leverage. 
In contrast to prior studies which employed in-sample tests to assess the importance of 
corporate leverage determinants, we conduct out-of-sample tests to exploit complex and 
high-dimensional patterns in leverage behavior and quantify the importance of its 
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determinants. Our analysis proves that machine learning models capture information from a 
broader set of characteristics than previous studies. For instance, while RF show that firm-
specific factors, such as Market-to-Book ratio (Mktbk), Net Payout (Netpay), Profitability 
(Profit), Bankruptcy Probability (Z-score) and Cash (Cash) are the primary determinants of 
market leverage, the rest of the models imply that macroeconomic factors, rather than firm 
factors are the determinants of market leverage.
 Most importantly, we present evidence on how machine learning models achieve target 
leverage faster than traditional linear models. Here, our primary interest is not only the 
machine learning models’ better performance of leverage adjustment speed, but also, to 
examine whether their estimate better conform to the trade-off theory, which suggests that 
firms’ leverage adjustment speed completely conforms to the theory when it is close to 1, 
and 0 otherwise. In particular, we pay attention to whether the affiliation to chaebols play as a 
decisive role in firms’ speed of leverage adjustment. Our result shows that the leverage 
adjustment speed of non-chaebols is much faster than that of chaebols in every model used 
including machine learning and traditional models; however, the leverage adjustment speed 
for non-chaebols under RF model is fastest at 48.27% which translates into 1.0515 half-life 
period, while the speed for chaebols under the same model is 30.87% which translates into 
1.8777 half-life1. This could be due to debt-dependent characteristic of chaebols which is 
known to have high leverages when compared to non-chaebols (Lee et al, 2000).
 The contribution of our research is as follows. First, to our knowledge, this study is first 
research to employ machine learning methodologies in analyzing target leverage for Korean 
firms. Second, we verified how machine learning models better estimate leverage 
adjustment speed and half-life year than traditional models, thereby better conforming to 
the trade-off theory. Lastly, we find the effect of heterogeneity between chaebols and non-
chaebols, on both leverage adjustment speed and half-life year.
    The rest of paper is organized as follows. Section 2 discusses previous researches and 
Section 3 presents data, methodology and predictive performance. Section 4 introduces 
machine learning and linear models used in our study. Section 5 presents the model for 
leverage adjustment speed and discusses the possible explanations for the results. Section 6 
presents additional analysis for chaebols and non-chaebols and Section 7 concludes.

2. Literature Review

2.1. Debates on capital structure

 The most prominent theories on capital structures are threefold: Trade-off theory, Pecking 
Order theory, and Market Timing theory. First, the trade-off theory suggests that there exists 
trade-off between benefits and costs that occurs from debt. In other words, firms decide their 
capital structure only taking into consideration the advantages and disadvantages of debt 

1 The detailed analysis will be presented in Section 7 which focus on the comparative analysis of chaebols and 
non-chaebols.
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(Flannery et al., 2006; Frank et al., 2004; Graham et al., 2001). According to the theory, there 
exists target leverage which maximizes firm value and if this deviates, firms would try to 
adjust their leverage in effort to conformation to the target leverage. Second, the pecking 
order theory states that firms prefer to finance itself internally through retained earnings 
(Fama et al, 2002; Shyam-Sunder et al., 1999). However, if this source of financing is 
unavailable, they would finance through debt. And as a last resort, firms would choose to 
finance itself through the issuing of new equity. Lastly, market time theory states that in 
consideration of financing cost, firms use debt when the stock price is undervalued.
 Among aforementioned theories, a large number of previous researches employ trade-off 
theory as a theoretical framework in analyzing target leverage (Fama et al., 2002; Flannery et 
al., 2006; Kim et al., 2007; Lemmon et al. 2008; Yoon et al, 2016). In general, it is widely 
believed that firms’ leverage adjustment speed completely conforms to the theory when it is 
close to 1, and 0 otherwise. In fact, firms do consider their own target leverage for a variety 
of reasons. For instance, Graham et al. (2001) states that 81% of firms answered that they 
take target leverage into account in decision-making for loan. As well, after conducting 
survey, Bancel et al. (2004) conclude that 75% of European firms have their own target 
leverage. However, it seems that optimal target leverage implied by the trade-off theory is 
not easily achieved. As the volatility of stock prices frequently causes firms’ market-to-debt 
ratio to deviate from its target, such deviations could cause firms not to immediately return 
to their target leverage by issuing or repurchasing securities (Eugene et al., 1977). For 
example, using OLS, Fama et al. (2002) finds that the adjustment towards target leverage is 
around 7-18% for a year. On the other hand, Flannery et al. (2007) and Lemmon et al. (2008) 
argue that firms tend to make a partial adjustment each year, moving around 30% of the way 
toward their target leverage.

2.2. Korean firms’ capital structure

 We choose the Korean firms to examine their capital structure for several reasons. First, 
Korean firms have had extremely high leverage, particular when compared to firms in other 
countries. As of the end of the 1997 Asian financial crisis. The total debt owed by Korean 
firms mounted up to 811 trillion won, which is equivalent to US$ 675 billion with a 
won/dollar exchange rate of 1,200, and was about 1.9 times as great as that year’s GDP (Nam 
et al., 1999) The average debt/equity ratio of the 30 largest chaebol-affiliated firms exceeded 
500% and some of them reached 3,000 percent (Lee et al., 2000). In the light of these 
considerations, we believe that there would exist an effect for heterogeneity for chaebols due 
to the history of leverage changes. Second, the estimated extents to which leverage 
adjustment speed are quite contrasting. Previous researches have employed a variety of 
econometric methodologies including firm-fixed panel model, OLS, FM, and GMM (Kim et 
al, 2007; Yoon et al, 2016; Lee et al, 2001). Using OLS and Fama et al. (1973) model, Yoon et al. 
(2016) find that the leverage adjustment speeds of Korean firms are 0.228 and 0.229 
respectively. Also, Kim et al. (2007) note that the leverage adjustment speed is at 0.35 when 
firm-fixed model is employed. On the other hand, Kim et al. (2010) argues that leverage 
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adjustment speed increases when the debt and equity financing market accessibility is fine; 
this result holds regardless of the use of book-to-market debt ratio as dependent variable. He 
further notes that firms can adjust leverage toward the target faster with the market 
accessibility of equity financing than that of debt financing.
 Another branch of concerns are raised due to nonlinearity, or complex, high-order 
interaction effects (Strob et al, 2008; Altman et al, 2017) or even unbalanced data panel and 
endogeneity between independent variables are not properly taken into account seriously 
(Giovanni et al., 2005; Yoon et al, 2016). In this regard, we confirm the success of machine 
learning algorithms in predicting target leverage and financing actions in a highly nonlinear 
and discrete environment where firms with unusually high leverages are to be observed.

3. Methodology

 We describe empirical models for predicting capital structure dynamics. The basic 
regression problem is to estimate a function g(Xi,t) = E(yi,t+1 | Xi,t) where yi,t+1 = g(xi,t) + εi,t+1 … (1)
 is the ith firm’s target leverage ratio in year t+1 and εi,t+1 is a random error component. Here, 
our goal is to estimate the function g(·) using machine learning and traditional regression 
methods. We expect that machine learning prediction functions capture nonlinear and 
discontinuous relations between yi and other associated covariates. As well, we believe that 
these machine learning models may also explain complex interaction effects that could exist 
in the covariates.

3.1. Linear models

3.1.1 Multi-regression model

 First, our baseline model is the following standard, multiple regression model of the form:g(Xi,t ; β) = X’i,tβ … (2)
 The regression parameters β estimated using OLS (Ordinary least squares) are defined by:βols= argmin∥ 푦−푥훽 ∥22…(3)
 where                        is the distance between the vectors a and b.

3.1.2. LASSO

 Next, we present and utilize LASSO model to address drawbacks to the previous multiple 

∥ a − b ∥2
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regression: Overfitting and potential multi-collinearities. LASSO is known as a method for 
shrinking parameters related to insignificant covariates to zero (Tibshirani, 1990). Simply 
speaking, LASSO acts as both a shrinkage and a model selection tool. The parameter 
estimates in the LASSO model for a given value of λ are given by:βλLASSO = argmin∥ y−xβ∥22 + λ∥ β∥ 1 for some λ > 0 … (4)
3.2. Machine learning model

 Machine learning algorithms are powerful for modeling nonlinear relationship among 
dependent and independent variables as well as capturing hidden complex interactions 
among them (Frank et al., 2009). The machine learning models we employ are random forest 
(Breiman, 2001) and gradient boosting machine (Friedman, 2001).

3.2.1. Random forests

 Suppose that we split the feature space X  into J unique nonoverlapping regions: R1, R2, …, 
Rj. The predicted value of y for any value within Rj is the average overall response values in 
Rj:

g rf( )x = ∑j = 1
J yj I{ }x ∈ Rj …(5)

Where I{ }x ∈ Rj  is an indicator that equals one if x is in Rj and 0 otherwise. The predictions 
from growing a single tree are known to exhibit high variance. Thus, the method of 
bootstrap aggregation is employed to alleviate this potential problem (Altman et al., 2017; 
Breiman, 1996; Efron et al., 1994). The results in an ensemble of trees from which to make 
predictions. The bagged estimate at x is the average estimate over all trees:

gbag( )x = 1B ∑b = 1
B g b( )x …(6)

 where gbag( )x  is the estimator defined in Eq. (6) on the 푏th bootstrap sample.

3.2.2. Gradient boosting model

 Compared with RF, gradient boosting regression trees sequentially grows trees by updating 
the data used to grow a tree after each tree is fit (Friedman, 2001). Starting by fitting a tree 
using the original data set, subsequent trees are grown using the fitted residuals, being 
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updated after each fit. Then, the estimate of ggbm(X) is the weighted sum of the individual 
estimates from each tree. Here, the weighting is controlled by a parameter λ that determines 
how fast the model “learn”.

3.3. Model tuning and fitting

 Machine learning models have one or more parameters not directly estimable from the data, 
often referred to as tuning parameters. A candidate set of parameters can be used a priori to 
assess their effectiveness. For each candidate parameter, the model is fit to a subset of the 
data and then assessed on its performance at predicting new observations in which the user 
knows the true response variables. To assess a parameter’s effectiveness on model 
performance, we use subsampling from the original data set. We divide our data into 
training sets (2003-2014) and testing sets (2015-2019). Within the training set, we create 00 
subsamples in the ML parlance, upon which we turn and validate each model’s performance 
on a validation set.
 One the appropriate set of tuning parameters is set for its respective model, we fit each 
candidate model to the entire training set from 2003 to 2014 using these tuning parameters. 
Then we use this model to make out-of-sample predictions in subsequent years. To be 
specific, the model would be updated in each subsequent year to make predictions on the 
following year. This process will be repeated through 2019.

4. Sample selection and summary statistics

4.1. Sample selection

 Now we explain sample distribution and variable definition. Our primary sample includes 
Korean firms listed on KOSPI, which are covered by Dataguide between 2003 and 2019. We 
exclude firms affiliated industries in finance or insurance. Subsequently, the Table 1 below 
presents observation number for all firms, chaebols and non-chaebols by each year. In total 
there are 6,545, 1,454, 5,101 firm-level observations respectively.2

Table 1. Sample distribution for all firm, chaebols and non-chaebols

All firm Chaebol Non-chaebol

Year
Number 
of Firm

Percent 
(%)

Cumulative 
Percent (%) Year

Number 
of Firm

Percent 
(%)

Cumulative 
Percent (%) Year

Number 
of Firm

Percent 
(%)

Cumulative 
Percent (%)

2003 318 4.86 4.86 2003 60 4.13 4.13 2003 258 5.06 5.06
2004 317 4.84 9.7 2004 65 4.47 8.60 2004 252 4.94 10.00 

2 The analysis in Section 4 will focus on the sample of all firms. The detailed analysis for chaebols and non-
chaebols will be conducted in following Section 5.
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2005 335 5.12 14.82 2005 69 4.75 13.35 2005 266 5.21 15.21 
2006 343 5.24 20.06 2006 77 5.30 18.64 2006 266 5.21 20.43 
2007 375 5.73 25.79 2007 84 5.78 24.42 2007 291 5.70 26.13 
2010 407 6.22 32.01 2010 89 6.12 30.54 2010 319 6.25 32.39 
2011 437 6.68 38.69 2011 103 7.08 37.62 2011 335 6.57 38.96 
2012 448 6.84 45.53 2012 113 7.77 45.40 2012 336 6.59 45.54 
2013 455 6.95 52.48 2013 117 8.05 53.44 2013 339 6.65 52.19 
2014 465 7.1 59.59 2014 115 7.91 61.35 2014 351 6.88 59.07 
2015 492 7.52 67.1 2015 112 7.70 69.05 2015 381 7.47 66.54 
2016 507 7.75 74.85 2016 116 7.98 77.03 2016 392 7.68 74.22 
2017 528 8.07 82.92 2017 101 6.95 83.98 2017 428 8.39 82.61 
2018 554 8.46 91.38 2018 114 7.84 91.82 2018 441 8.65 91.26 
2019 564 8.62 100 2019 119 8.18 100 2019 446 8.74 100 

Total 6,545 100 　 Total 1454 100 　 Total 5101 100 　

 Subsequently, we present the main variables used for our prediction in Table 2. Following 
Amini et al. (2021), we use four dependent variables in measuring leverage, which are TDM, 
TDA, LDA and LDA. Subsequently, firm-value and firm-specific factors include 
Profitability(Profit), Firm Size(Assets), Mature firm(Mature), Market-to-Book ratio (Mktbk), 
Assets Growth(ChgAsset), Physical Investment(Capex), Assets Tangibility(Tang), Innovation 
Investment(RD), Uniqueness(Unique), Nonproduction cost(SGA), Top Tax Rate(Taxrate), 
Depreciation(Depr), Stock Variance(StockVar), Bankruptcy Probability(Zscore), Debt 
Rating(Rating), Stock Returns(StockRet), Market Returns(CrspRet), Industry 
Leverage(Industlev), Industry Growth(Industrgr), Logarithm of annual firm profits 
(Macroprof), Net Payout(Netpay). Macroeconomic factors include Term Spread (Termsprd), 
Inflation (Inflation) and Growth in GDP(Macrogr). Industrial dummies are Size Dummies, 
Growth Dummies and High-Tech Dummy. Lastly, MVE and MVA are calculated to make up the 
variables such as Leverage measured in MVA, TDM and LDM accordingly. The detailed 
definition for each variable is presented in following Table 2.

Table 2. Variable Definitions

Variables Description
Market Value of 

Equity(MVE)
The stock’s fiscal year close price times common shares outstanding

Market Value of 
Assets(MVA)

Debt in current liability plus long-term debt plus preferred stock liquidating 
value minus deferred tax + MVE

Leverage(TDM) (Debt in current liabilities plus long-term debt)/MVA

Leverage(TDA) (Debt in current liabilities plus long-term debt)/total assets
Leverage(LDM) Long-term debt/MVA
Leverage(LDA) Long-term debt/total assets

Profitability(Profit) Operating income before depreciation/total assets
Firm Size(Assets) The logarithm of total assets

Mature firm
(Mature)

A dummy variable that equals one if the firms has been in the Dataguide DB 
for last 5 years and equals zero otherwise
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Market-to-Book
(Mktbk)

Market value of assets/total assets

Assets Growth
(ChgAsset)

Change in the logarithm of total assets

Physical 
Investment(Capex)

Capital expenditure/total assets

Assets Tangibility
(Tang)

Net property, plant and equipment/total assets

Innovation 
Investment(RD)

Research and development expenses/total sales

Uniqueness
(Unique)

A dummy variable equals one if the firm belongs to industries producing space 
vehicles, missiles, aircraft, computer, semiconductor, and chemicals, and zero 

otherwise
Nonproduction

cost(SGA)
Selling, general and administrative expenses/total sales

Cash Holdings(Cash) Cash and short-term investments/total assets
Top Tax Rate(Taxrate) The top firm tax rate

Depreciation
(Depr)

Depreciation and amortization/total assets

Stock Variance
(StockVar)

The annual variance of daily stock returns

Bankruptcy 
Probability(Zscore)

Altman’s Z-score (1968)3

Debt Rating(Rating)
A dummy variable that equals one if a firm’s credit rating is above BBB. The 

dummy variable is zero if it is lower than BBB.
Stock Returns(StockRet) Cumulative annual stock returns using monthly raw returns

Market 
Returns(CrspRet)

Cumulative annual market returns using monthly raw returns

Industry Leverage
(Industlev)

The median of firm leverage (TDM)

Industry 
Growth(industgr)

The median of assets growth (ChgAsset)

Term Spread
(Termsprd)

The difference between the 10-year bond returns and the 1-year bond returns

inflation Expected one-year change in the Consumer Price Index

3 For emerging countries including Korea, the calculation methodology for Z-score is calculated as follows 
(Meeampol et al., 2014).

Z = 3.25 + 6.56X1 + 3.26X2 + 6.72X3 + 1.05X4

X1 = (Current Assets – Current Debt) / Total Assets
X2 = Current Profit/Total Assets
X3 = EBIT/Total Assets
X4 = Total Capital/Total Debt
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Macroporf
Change in the logarithm of annual firm profits with inventory valuation and 

capital consumption adjustments

Growth in 
GDP(Macrogr)

Change in the logarithm of real GDP

Net Payout
(Netpay)

(Cash dividends plus purchase of common and preferred stock minus sale of 
common and preferred stock)/total assets

Size Dummies A firm is labelled 2, 1, and 0 if the size of the firm (Assets) lies in the upper 30%, 
middle 40% and lower 30%

Growth Dummies A firm is labeled high-growth, middle-growth and low-growth if the market-
to-book (Mktbk) of firm lies in upper 30%, middle 40% and lower 30%

High-Tech Dummy A dummy variable that is one if a firm offers technology products and services 
and zero otherwise

5. Machine learning and leverage

5.1. Predicting performance

 Now we conduct and assess the predictive performance of each traditional and machine 
learning model. We use 2003-2014 as the training period to tune our machine learning model 
and test out-of-sample performance and MSE over the 2015-2019. In measuring the 
performance, we estimate the out-of-sample R-squared (ROS2 ) and MSE (mean squared error).
 In Table 3 and Table 4 below, we present yearly estimates of the out-of-sample R-squared 
(ROS2 ) and MSE respectively. First, it seems evident that the predictive performance of RF excels those 
of others in most period. The predictability for GBM nearly matches RF’s throughout the sample and 
reaches 0.5272 in 2019. On the other hand, the traditional models, OLS and LASSO are ranging from -
0.1052 to 0.40 and -1.2106 to 0.4025 respectively, even showing estimates negative signs in some 
periods. Thus, our results in overall indicate that machine learning models generally improve on the 
performance of the linear OLS and LASSO model.

Table 3. Out-of-sample performance (ROS2 ) of machine learning versus linear models

2015 2016 2017 2018 2019 2015~2019

OLS -0.105230 0.031941 0.401143 0.126228 -1.609892 -0.265298

LASSO 0.006570 0.103022 0.402515 0.191566 -1.210615 -0.127837

RF 0.606779 0.565904 0.523065 0.532053 0.527210 0.552908

GBM 0.591878 0.545335 0.404715 0.537237 0.543981 0.528520

Table 4. Out-of-sample performance (MSE) of machine learning versus linear models

2015 2016 2017 2018 2019 2015~2019
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OLS 0.059471 0.049278 0.031259 0.047088 0.149441 0.068474

LASSO 0.053456 0.045660 0.031187 0.043567 0.126579 0.061035

RF 0.021159 0.022097 0.024895 0.025218 0.027072 0.024195

GBM 0.021961 0.023144 0.031072 0.024939 0.026111 0.025515

 We turn our attention to the estimates of MSE for traditional linear models and machine 
learning models. As evident in the table, the estimates of RF seem to be the lowest, which 
ranges from 0.0212 to 0.0271. Again, the estimates of GBM nearly matches those of RF in 
each year, which ranges from 0.0220 to 0.0311. On the other hand, the estimates of OLS and 
LASSO range from 0.0313 to 0.1494 and 0.0312 to 0.1266. Interestingly, we find the estimates 
sharply go up in the last year for each linear model, indicating that their regression line to a 
set of points is becoming less fitted in later year of our sample.

5.2. Variable importance

 Now we look at the variable importance for the traditional linear models and machine 
learning models. In Figure 1 below, the Panel A and Panel B represent the variable 
importance of linear models and LASSO. Subsequently, Panel C and Panel D show the 
variable importance of RF and GBM respectively. These estimates are obtained from the 
training sample over 2003-2014 and we use them to calculate the variable importance for 
2015. In each panel, the figure to the left shows the variable importance for training set and 
the figure to the right shows the variable importance for the predicted test set based on the 
training set data.
 For both linear and LASSO model, the firm-specific factors such as Size, Mktbk, Growth, 
Netpay and Z-score are the top five highest importance, indicating that these firm-specific 
factors have more explanatory power in each model. Rather, the firm-specific variables such 
as Capex, Assets, Depr, and ChgAsset, show negative signs, implying their less significant 
impact in each model.

Figure 1. Variable importance from linear and machine learning model (TDM)
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 On the other hand, it seems certain that for both RF and GBM model, the firm-value factors 
such as Mktbk, Netpay, Z-score, Profit, and Growth are of the highest variable importance, 
indicating that their firm-specific factors have more explanatory power in each model. 
Rather, firm-specific or macroeconomic variables such as Stock, Macrogr, Inflation, Termsprd 
and Industlev are of the lowest variable importance, indicating that these factors less more 
explanatory power in each model. To summarize, our analysis of variable importance for 
machine learning models demonstrate that the firm-value factors have more explanative 
power in predictions, while firm-specific or macroeconomic variables have less explanative 
power.

6. Machine learning and leverage adjustment

6.1. Estimating leverage adjustment speed

 Now we conduct further analysis to estimate leverage adjustment speed. In accordance with 
our theoretical framework (Amini et al., 2021; Fama et al., 2002; Flannery et al., 2006; Kim et 
al., 2007), firms, in order to rebalance their capital structure, evaluate how quickly to close 
any gap between actual and target capital structure. We define the gap as GAPi,t = E(yi,t+1)-yi,t, and the leverage adjustment model is as follows.△yi,t+1=λGAPi,t + εi,t+1 … (7)
 In eq. (7) above, the adjustment speed, λ, allows firms to move partially towards their target 
leverage during year t. Here, if firm managers have their own target debt ratio and have 
willingness to reach them, λ should be greater than zero. Put it differently, whenever there 
exists wedge between target and actual leverage ratio, firms will adjust the ratio accordingly.
 The Table 5 below presents the adjustment speed estimates for both traditional linear 
models and machine learning models. We use the dependent variables, TDM and TDA, to 
observe the GAP, denoted as λ, and half-life. The estimates for linear model, LASSO, RF and 
GBM are separated into Column 1, Column 2, Column 3 and Column 4 respectively. Further, 
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we present estimates which include firm-fixed effects for each model as presented in 
Column 5, Column 6, Column 7 and Column 8.

Table 5. The speed of leverage adjustment

Without firm-fixed effect With firm-fixed effect

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: TDM
Multi

regression
LASSO RF GBM

Multi
regression

LASSO RF GBM

GAP
0.07***
(0.006)

0.08***
(0.006)

0.11**
(0.011)

0.11**
(0.011)

0.14**
(0.013)

0.16**
(0.013)

0.47**
(0.024)

0.32**
(0.022)

Observation 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650

Adjusted ROS2 0.056 0.057 0.041 0.036 0.056 0.064 0.152 0.091

Half-life in years 3.78 3.69 3.16 3.23 2.81 2.61 1.14 1.64

Panel B: TDA

GAP
0.05***
(0.008)

0.06***
(0.008)

0.08***
(0.01)

0.08**
(0.011)

0.28**
(0.02)

0.32**
(0.021)

0.41**
(0.024)

0.31**
(0.023)

Observation 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650

Adjusted ROS2 0.017 0.018 0.022 0.019 0.053 0.067 0.091 0.044

Half-life in years 4.27 4.18 3.62 3.71 1.82 1.63 1.30 1.90
Symbols ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

 In Column 1 to Column 4, both machine learning models yield an adjustment speed for 
0.11(RF, GBM) for TDM, which barely excels those of linear models, which are at 0.07(Multi-
regression) and 0.08(LASSO) respectively. However, when the estimates are translated into 
half-life, the new estimates in years for machine learning models are 3.16(RF) and 3.23(GBM), 
which are much shorter than the estimates of traditional linear models which are 3.78(Multi-
regression) and 3.69(LASSO). The new estimates for TDA in machine learning models are 
both shorter than those of traditional linear models. In Column 5 to Column 8, the results 
with firm-fixed effect are found to be more interesting. The estimates in both machine 
learning models yield an adjustment speed for 0.47(RF) and 0.32 (GBM) for TDM, which 
largely excels those of linear models, which is at 0.14(Multi-regression) and 0.16(LASSO) at 
statistically significant model. The half-life is 1.14 and 1.64 for RF and GBM, which are much 
shorter than 2.81 and 2.61 for multi-regression and LASSO model. Again, the estimates for 
adjustment speed for TDA in machine learning models are both greater than those of 
traditional linear models and accordingly, each half-life is shorter than respective traditional 
models. All estimates in Table 5 are at statistically significant level.

6.2. Determinants of leverage adjustment speed
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 We undertake additional analysis in order to capture the importance of explanatory 
variables for estimating the speed of leverage adjustment. We deliberately select RF model 
since it shows the most satisfactory performance in both the speed of leverage adjustment 
and half-life in previous analysis. In particular, we divide the period for training into 2010-
2014 and 2010-2018 in Panel A and Panel 2 in Figure 2 below. The variable importance is 
reported for the last year of the sample, which is 2019. 

Figure 2. Variable importance from RF for 2010-2014 and 2010-2018 (TDM)

 In the Figure above, it is evident that firm-specific factors are mostly of variable importance 
in both periods. For 2010-2014, Mktbk, Netpay, Profit, Zscore and Cash are the explanatory 
variables, while Mktbk, Netpay, Zscore, Profit and Growth are the explanatory variables for 
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2010-2018. It is interesting to note that the results of the Figure 2 bears similarity to the 
results in Figure 1, implying that the firm-value factors are still the most explanatory 
variables in machine learning models.

7. Additional analysis

7.1. Leverage adjustment speed for chaebols and non-chaebols

 Now, we conduct additional analysis in order to find out the heterogeneity effect for firms 
affiliated to chaebols. In last decades, there has been a wide debate and discussion over the 
determinants of firm debt in Korea (Lee et al, 2000; Kim et al, 2007; Yoon et al., 2016). More 
than often, profitability, firm size and growth rate are well-known as common determinants 
in financing decision for Korean firms. In particular, Lee et al (2000) notes that chaebols have 
much higher leverage than non-chaebols firms in Korea, implying their less flexibility to 
adjust to new leverage ratio and making financing decision when in recession and credit 
crunch. Here, it seems reasonable to argue that in comparison with non-chaebols, it would 
take more speed of leverage adjustment for chaebols, leading to the increase of half-life in 
years. In fact, we find striking difference across chaebols and non-chaebols, as presented in the 
Table 6 and Table 7 below, respectively.

Table 6. The speed of leverage adjustment (chaebols)

Without firm-fixed effect With firm-fixed effect

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: TDM
Multi

regression
LASSO RF GBM

Multi
regression

LASSO RF GBM

GAP
0.09***
(0.000)

0.10***
(0.000)

0.08***
(0.000)

0.08 ***
(0.000)

0.19***
(0.000)

0.22***
(0.000)

0.31***
(0.000)

0.22***
(0.000)

Observation 562 562 562 562 562 562 562 562

Adjusted ROS2 0.106 0.103 0.029 0.024 0.259 0.269 0.250 0.214

Half-life in years 7.32 6.93 8.19 8.23 3.33 2.79 1.88 2.86 

Panel B: TDA

GAP
0.04***
(0.004)

0.04***
(0.003)

0.03*
(0.066)

0.03
(0.137)

0.25***
(0.000)

0.27***
(0.000)

0.25***
(0.000)

0.14***
(0.001)
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Observation 562 562 562 562 562 562 562 562

Adjusted ROS2 0.013 0.013 0.005 0.002 0.178 0.183 0.154 0.124

Half-life in years 18.16 17.92 21.32 25.58 2.40 2.24 2.40 4.57 
Symbols ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

Table 7. The speed of leverage adjustment (non-chaebols)

Without firm-fixed effect With firm-fixed effect

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: TDM
Multi

regression
LASSO RF GBM

Multi
regression

LASSO RF GBM

GAP
0.07***
(0.000)

0.08***
(0.000)

0.12***
(0.000)

0.12***
(0.000)

0.14***
(0.000)

0.16***
(0.000)

0.48***
(0.000)

0.36***
(0.000)

Observation 2088 2088 2088 2088 2088 2088 2088 2088

Adjusted ROS2 0.050 0.052 0.045 0.040 0.022 0.030 0.135 0.082

Half-life in years 9.50 8.80 5.42 5.68 4.75 4.09 1.05 1.54 

Panel B: TDA

GAP
0.05***
(0.000)

0.06***
(0.000)

0.09***
(0.000)

0.08***
(0.000)

0.26***
(0.000)

0.31***
(0.000)

0.43***
(0.00)

0.31***
(0.000)

Observation 2088 2088 2088 2088 2088 2088 2088 2088

Adjusted ROS2 0.017 0.018 0.026 0.020 0.035 0.050 0.089 0.036

Half-life in years 12.85 11.69 7.28 8.13 2.30 1.90 1.25 1.86 
Symbols ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

 In Table 6, the results for both linear models and machine learning models are contrasting to 
the analysis in Table 5. First, the leverage adjustment speed of machine learning models is 
slower than those of traditional linear models without firm-fixed effect. However, even if 
firm-fixed effect is included, the estimates of machine learning models barely excel those of 
traditional linear models. In contrast, however in the Table 7 for non-chaebols, the results for 
both linear models and machine learning models are similar to the analysis in Table 5 in that 
(1) the leverage adjustment speed of machine learning models is faster than those of 
traditional linear models with, or without firm-fixed effects, and (2) the half-life of machine 
learning models is shorter than those of traditional linear models. Interestingly, the leverage 
adjustment speed of non-chaebols when measured in RF with firm-fixed effect is 0.48 and 
0.43 which is much faster than those of chaebols which are at 0.31 and 0.25, which lead to 
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large difference in half-life in years. Thus, it is reasonable to conclude that our analysis well 
conforms to the characteristics of chaebols defined by previous researches (Lee et al, 2000; 
Yoon et al, 2005).

7.2. Variable importance for chaebols and non-chaebols

 Similar to previous section, we conduct random forest model to analyze and rank the 
impact of factors on the speed of leverage adjustment. The figure 3 below plots the 
importance of explanatory variables for estimating the speed of adjustment using random 
forest (RF) model for chaebols (Panel A and Panel B) and non-chaebols (Panel C and Panel D). 
The estimates are obtained from training the model over the period 2010-2015 and 2010-2018. 
Accordingly, the variable importance is reported for the last year of the sample, 2019.
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Figure 3. Variable importance from RF for 2010-2015 and 2010-2018 (TDM)

 For the chaebols in Panel A and Panel B in the Figure 3, it appears that Profit seems to be one 
of the most determinant in financing decision for the affiliates. This is in accordance with the 
previous researches in that profitability of chaebols is a major concern for investors and 
capital markets. In fact, the firm value of chaebols has been assessed on the basis of 
profitability, thanks to the long support of government. Since the 1997 Asian financial crisis, 
chaebols have become a very profitable firms with less over-investment despite fewer tax 
perks (Baek et al, 2004; Lee et al, 2008). In contrast, for non-chaebols, the firm-specific factors 
such as Mktbk, Netpay, Cash, Z-score and Growth are found to be the most determinants in 
their financing decisions, which is in accordance with the results in the analysis for all firms 
in the Figure 1. This finding bears significant importance as follows. Not only does machine 
learning model captures the variable importance more effectively than other traditional 
models, but also, it better explains the characteristics of the financing decision of chaebols, 
which is unique to Korean business environment.
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7.3. Leverage adjustment speed for chaebols and non-chaebols

 Lastly, we present leverage adjustment speed and half-year for every model with the 
different dependent variables, TDM, TDA, LDM, and LDA, for all firms, chaebols and non-
chaebols In Table 6 below. In general, the leverage adjustment speed of non-chaebols is found 
to be faster than that of chaebols in most of the leverage variables. Exceptionally, however, for 
LDM with firm-fixed effect, the leverage adjustment speed of chaebols is found to be faster 
than that of non-chaebols, which translate into shorter half-year. We speculate that this well 
reflects the financial behavior of chaebol-affiliated firms: A partial adjustments to their long-
run targets. The potential explanation is that the interaction between the financial decisions 
and long-run financial targets – their tendency to cash holding, for example - will allow 
variations in the speed of adjustments over time (Jalilvand and Harris, 1984).
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Table 6. Leverage adjustment speed and half-year for all firm, chaebols and non-chaebols

 

All firm Chaebol Non-chaebol

Model
Firm-fixed 

effect
Leverage 

adjustment speed
half-year

Leverage 
adjustment speed

half-year
Leverage 

adjustment speed
half-year

TDM

linear

No

0.0736 9.0694 0.0903 7.3230 0.0703 9.5038 
lasso 0.0788 8.4536 0.0952 6.9274 0.0758 8.7952 
RFR 0.1130 5.7806 0.0812 8.8188 0.1201 5.4184 
GBM 0.1057 6.2040 0.0807 8.2328 0.1150 5.6756 
linear

Yes

0.1425 4.5098 0.1880 3.3276 0.1358 4.7508 
lasso 0.1639 3.8715 0.2199 2.7913 0.1559 4.0889 
RFR 0.4566 1.1363 0.3087 1.8777 0.4827 1.0515 
GBM 0.3156 1.8278 0.2152 2.8607 0.3628 1.5383 

TDA

linear

No

0.0528 12.7711 0.0375 18.1594 0.0525 12.8498 
lasso 0.0563 11.9686 0.0379 17.9190 0.0576 11.6929 
RFR 0.0836 7.9385 0.0320 21.3196 0.0908 7.2788 
GBM 0.0774 8.6078 0.0267 25.5843 0.0817 8.1327 
linear

Yes

0.2818 2.0943 0.2512 2.3964 0.2602 2.2996 
lasso 0.3213 1.7883 0.2663 2.2386 0.3060 1.8972 
RFR 0.4144 1.2952 0.2510 2.3978 0.4263 1.2474 
GBM 0.3059 1.8981 0.1408 4.5676 0.3113 1.8589 

LDM

linear

No

0.2046 3.0278 0.1865 3.3573 0.2097 2.9446 
lasso 0.2081 2.9703 0.1899 3.2918 0.2514 2.8567 
RFR 0.2503 2.4058 0.2380 2.5497 0.2414 2.5088 
GBM 0.2539 2.3667 0.2596 2.3066 0.2560 2.3444 
linear

Yes

0.7814 0.4559 0.8771 0.3306 0.7393 0.5156 
lasso 0.8283 0.3934 0.8907 0.3131 0.8144 0.4115 
RFR 0.8333 0.3869 0.8549 0.3591 0.8543 0.3598 
GBM 0.8167 0.4086 0.8397 0.3786 0.8392 0.3793 

LDA

linear

No

0.2463 2.2452 0.1663 3.8118 0.2673 2.2287 
lasso 0.2500 2.4092 0.1811 3.4696 0.2680 2.2217 
RFR 0.3008 1.9373 0.2440 2.4781 0.3199 1.7979 
GBM 0.3010 1.9358 0.2382 2.5471 0.3219 1.7842 
linear

Yes

0.8539 0.3604 0.7240 0.5384 0.8700 0.3397 
lasso 0.8691 0.3409 0.8290 0.3925 0.8735 0.3352 
RFR 0.8707 0.3388 0.8671 0.3435 0.8905 0.3134 
GBM 0.8420 0.3757 0.7863 0.4491 0.8632 0.3485 
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8. Conclusion

The results of our analysis are as follows. First, our machine learning approach achieves 
substantial gains in estimating target leverage. For example, ROS2  statistics for RF and GBM 
are found to be greater than those for OLS and LASSO over the testing period (2015-2019), 
with or without firm-fixed effect. Further, it seems clear that RF and GBM outperform linear 
models, leading to lower error every year in the testing period, as measured in with or 
without firm-fixed model. Second, our results demonstrate that the leverage adjustment 
speed of machine learning models is much faster than those of traditional linear models, 
which translate into much lower half-life in years. Third, we find heterogeneity effect for 
chaebols and non-chaebols in leverage adjust speed. For instance, the leverage adjustment 
speed for non-chaebols is much faster than that of chaebols in most model used, including 
machine learning and traditional models with or without firm-fixed effect. This could be due 
to debt-dependent characteristic of chaebols which are known to have extremely high 
leverages when compared to non-chaebols and firms in other countries (Lee, 2000).
 The contribution of our research is as follows. First, to our knowledge, this study is first 
research to employ machine learning methodologies in analyzing target leverage for Korean 
firms. Second, we verified how machine learning models, RF and GBM, better estimate 
leverage adjustment speed and half-life year than traditional models, thereby better 
conforming to the trade-off theory. Lastly, we find the effect of heterogeneity between 
chaebols and non-chaebols, on both leverage adjustment speed and half-life year, proving that 
the characteristics of chaebols, high leverages, are still identified and considered in machine 
learning models.
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