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Abstract—The DAG-based tangle model proposed by the IOTA
Foundation aims to remove the transaction fee by employing a dif-
ferent protocol from that used in the blockchain. They proposed
the MCMC algorithm for tip selection in the tangle; however,
concerns about centralization by the coordinator nodes remain.
Additionally, the economic incentive to choose the algorithm is
insufficient. The present study proposes a light and efficient tip
selection algorithm that considers only the subtangle of each
step by considering the Bayesian inference. Experimental results
have confirmed that the proposed methodology has considerable
performance similar to the existing methodology and has faster
computation time. The proposed methodology has the same
resistance as the MCMC algorithm for possible attacks on the
same reason as the MCMC algorithm.

I. INTRODUCTION

To address the high transaction fee problem in micro-
payments, [1] has proposed the tangle, which is a directed
acyclic graph (DAG)-based distributed ledger, in which the
group issuing transactions is identical to the group confirming
transactions. In the tangle, all participants in the system have
the same demand (purpose) for issuing a transaction. The
tangle presents a conditional cost of mandatory transaction
confirmations to achieve the purpose of issuing a transaction.
In other words, the issuance of the transaction replaces the
incentive for transaction approval so that the demand and
supply are matched within the system without exogenous
supply, such as the miner provided. Thus, he tried to maintain
the distributed ledger without transaction fee while discarding
the blockchain-type ledger adopted in the bitcoin or ethereum.

Currently, a light node in the IOTA receives the results of
the MCMC-based tip selection algorithm from a node operated
by the Foundation, known as a ”coordinator,” by calling the
tip selection API to select the tips to approve. To choose
the tips, a coordinator node considers a reliable transaction
(a ”milestone”) issued by a coordinator node to implement a
MCMC algorithm. However, transactions with a trustworthy
status granted by the coordinator node of the Foundation
bring a centralization issue to IOTA. Additionally, there is
no reason to enforce a suggested tip selection method for
general users. [2] separated nodes complying with the default
tip selection algorithm with the selfish nodes pursuing their
own profits. Rather, it sounds a bit more logically plausible
that every node behaves ”selfishly” in a way that minimizes
their own cost. A general participant wants their transactions
cumulative confirmation to become sufficiently large in the

tangle. Therefore, they may want to take a strategy that allows
their transaction weight to accumulate quickly. Hence, at this
point, the only strategy they can take is to choose tips that can
quickly increase their own cumulative weight.

In what follows, we propose a more efficient and light
tip selection algorithm that allows users to achieve their
objective of maximizing their probability of confirmation by
selecting adequate tips. In addition, we discuss the resistance
of the proposed algorithm against possible attack scenarios,
and finally, present recommendations for future works.

II. RELATED WORK

In the field of cryptocurrency, DAG-based ideas have
been considered to circumvent several drawbacks of the
blockchain[3], [4], [5], [6]. The greedy heaviest-observed sub-
tree (GHOST) protocol suggests that the whole chain maintains
several uncle blocks that fail to generate a new block because
they take a longer time do so compared with the first block
maker. The GHOST protocol considers the blockchain as a
tree. It can be used as a solution to the network security
problem, which is caused by the faster block generation time
leading to a higher stale rate [4]. [6] proposed the DAG-based
cryptocurrency model in which considers the miner and the
block. In this model, the block contains only one transaction
and is called the site.

III. BAYESIAN INFERENCE

Before we make a statement of the proposed method, we
would give a brief description of Bayesian inference. Bayesian
inference, a kind of statistical inference, uses the Bayes’
rule to update the unknown objective probability density as
more evidence or information becomes available. Apart from
being widely applied in the fields of science, engineering, and
philosophy, Bayesian inference has been employed especially
in the dynamic analysis of data sequences [7], [8], [9].

In Bayesian inference, the posterior distribution can be
deduced from two antecedent probabilities, a prior and likeli-
hood, according to Bayes’ rule expressed as

P (H|E) =
P (E|H)P (H)

P (E)
, (1)

where H means any hypothesis affected by the data, E, which
is the evidence corresponding to new data; P (H|E) is a



probability that we ultimately want to know after the evidence
E is observed; P (E|H) is the probability of observing the
evidence when the hypothesis or the model is given; and
P (H) is a prior density, that is, a probability of the objective
hypothesis or model before the evidence is given.

In this study, we apply the Bayes rule to study the data
sequence of a specific type, that is, a time series of subtangles
in the IOTA ecosystem. To select tips in the IOTA ecosystem,
we want to precisely estimate the t-th probability distribution
for the nodes, the posterior distribution, P (Ht|Et) given the
evidence of t-th subtangle. The posterior density can be
approximated in proportion to the product of the (t − 1)-th
prior density, P (Ht−1), and a likelihood, P (Et|Ht−1), which
refers to the probability of the t-th subtangle given the (t−1)-
th approximated density for the nodes.

P (Ht|Et) ∝ P (Et|Ht−1)P (Ht−1) (2)

A detailed description of Bayesian inference in the pro-
posed algorithm is presented in the next section.

IV. LIGHT TIP SELECTION ALGORITHM

We also restrict the network structure as a tangle of IOTA
and develop the argument by accepting the basic assumptions
and related definition in the white paper of IOTA. In this work,
we approximate a discrete probability density for the existing
tip set as the original tip selection algorithm does [1]. The
difference from the conventional tip selection algorithm is that
the probabilistic distribution of the tip set is projected into
the space of the node set consisting of nodes issued on a
site in the subtangle. The reason why the tip set is selected
by the cumulative weight of the node is that a node with a
high cumulative weight would want to maintain such high
cumulative weight by carrying out confirmations quickly. The
proposed tip selection algorithm is described below.

1 If the node participates in the network for the first
time, two of the currently available tips are randomly
selected.

2 In subsequent tip selections, each node selects a new
tip set from the prior density based on the precedence
subtangle, wherein all sites are directly or indirectly
confirmed by the tip set recently confirmed by each
node.

3 Based on the updated subtangle, the discrete likelihood
distribution can be suggested for the nodes issuing
a transaction in the updated subtangle. The value of
the likelihood distribution of each node should be
approximated in order to reflect the principle that
malicious nodes have a smaller probability than typical
participant nodes based on the already known infor-
mation of the preceding subtangle.

4 The posterior distribution is updated given the likeli-
hood and a prior distribution.

While the existing MCMC methodology discusses the
probability density over the tips itself, the current study deals
with the probability density over the nodes that issued sites.
Hereafter, we shall update the probability density only for the
moments when the user should select the tips and the moment

at which a transaction is issued. For the sake of brevity, the
moment of issuing the t-th transaction and selecting the t-th
tips is referred as the t-th phase. We addresses the modeling
of the discrete posterior density transition over the time by
deploying the Bayes’ rule. In the other word, a discrete
posterior density at the t-th phase is determined by the t-
th prior and the t-th likelihood distribution, which is created
based on the t-th subtangle consisting of approved sites by the
selected tips at the t-th phase.

the posterior distribution obtained in the immediately pre-
ceding phase becomes the prior distribution at the present
phase. Using the Markov chain structure, it is assumed that
the present prior distribution contains cumulative information
according to the subtangle at each precedent phase. Before
becoming the t-th state, a node has a discrete posterior distri-
bution for the nodes and participants in the network based on
the (t−1)-th subtangle. Assuming that the set of participating
nodes known by this node at the (t − 1)-th phase is K, then
the equation below is established,∑

i∈K
p(X = i) = 1, i ∈ K, (3)

where pi is the prior density of the i-th node.

Before updating the posterior distribution, we first propose
a probability distribution for choosing tips in the t-th phase
based on the t-th prior distribution. We defined additional set
M and K ′ at the t-th phase. Set M contains new nodes, which
are not contained in the set K and newly appear in the t-th
subtangle. Set K has a subset K ′ which contains the nodes
excluded from the tip issuing node set at the t-th phase. Each
k, k′ and m means the number of elements in the set K,K ′
and M .

Based on the above assumptions and equation 3, we can
derive a probability distribution for tip selection as follows,

ptip(X = x) =


k−k′

k−k′+m
p(X=x)∑

i∈K\K′ p(X=i)
, x ∈ K\K ′

1
k−k′+m , x ∈M

(4)

In the t-th phase, new information we can obtain is the
subtangle created after selecting a set of tips based on a
given above probability distribution. We need an appropriate
likelihood distribution to estimate the posterior probability
density for the union of the known set of nodes K and the
set of new nodes L from the subtangle. For the sake of
argument, we classify the entire node set into three subset
to propose a proper likelihood distribution. The characteristics
of each subset and the estimates of the likelihood distribution
are described in each subsection.

A. Set A: only included in the prior distribution

Since the set A consists of nodes that are included in the
prior distribution but are excluded when forming the subtangle,
the new information relevant to set A can not be obtained from
the subtangle. Therefore, the likelihood distribution is obtained
from the average cumulative weight held in the prior density
in a manner similar to the existing tangle. The nodes included
in set A can be considered as two cases as follows: the number
of issued transactions and the average cumulative weight are



small or large nodes. The second case is more likely to be a
malicious intentional node. Despite the fact that a large number
of transactions have been issued by a node, if a node can only
be observed in the restricted subtangle, it is likely that the
node intentionally attempted. Therefore, it is reasonable to give
a likelihood distribution in inverse proportion to the average
cumulative weight. We have proposed the following likelihood
distribution for the set A, taking into account the case of other
subsets.

pA(X = x) =
NA

NA +NB +NC

exp(−α1wx)∑
i∈A exp(−α1wi)

, x ∈ A,

(5)
where NS is the number of elements in set S, wx is the average
cumulative weight of node i based on the (t−1)-th subtangle,
and α1 is the parameter for the distribution. Set B and C are
defined by each subsequent subsection.

B. Set B: both included in the prior distribution and the t-th
subtangle

Set B covers nodes that are observed in both consecutive
phases. When a normal node is observed in successive phases,
it is assumed that transactions are issued on average λ times
between the two phases depending on the Poisson process
assumption. It can be expected that the average cumulative
weight of a typical node will increase by about λ between the
two consecutive phase.

Consider now the case where the average cumulative
weight change is noticeably larger than lambda. Regardless of
the direction of change, this means that the corresponding node
is not usual. For example, an abnormal average cumulative
weight increase may be a signal that the node has started a
malicious attack. An extraordinary reduction in the average
cumulative weight may also be a signal that the (t − 1)-th
subtangle contained the parasite tangle of malicious node. In
other words, it is reasonable that a likelihood distribution is
presented based on the extreme change in the average cumula-
tive weight. We employ a step function for implementing the
corresponding likelihood distribution. If the absolute value of
the difference of the node’s average cumulative weight between
the (t−1) and t-th phases is greater than the sum of λ and the
parameter α3, then the likelihood that a transaction generated
by the node is selected as a tip is reduced. Therefore, the
likelihood distribution of set B can be approcimated as follows,

pB(X = x) =

{
n1

n1+n2
p, if |w(t−1)

x − wt
x| ≥ λ+ α3

n2

n1+n2
(1− p), if |w(t−1)

x − wt
x| < λ+ α3,

(6)
where n1 is the number of nodes satisfying the first condition,
and n2 is the number of nodes satisfying the second condition
in set B, p is the threshold probability, α3 is the parameter for
the model.

C. Set C: only included in the t-th subtangle

In the case of set C, it consists of newly observed nodes
in the t-th subtangle. In other words, it is possible to estimate
the likelihood distribution with the same principle as in the
case of the set A. The only difference between the two cases
is that set C uses node information of the t-th subtangle unlike

set A, which investigates node information of the (t − 1)-th
subtangle.

pC(X = x) =
NC

NA +NB +NC

exp(−α3wx)∑
i∈C exp(−α1wi)

, x ∈ C,

(7)
where NS is the number of elements in set S, wx is the average
cumulative weight of node i based on the t-th subtangle, and
α3 is the parameter for the distribution.

Assuming that a sincere node and a malicious node each
issued a total of n transactions, the transaction issued by the
sincere one would cumulate its own weight independently
from other sincere participants. After the adaptation period, the
cumulative weight would increase linearly. After the adaptation
period, a cumulative weight of each transaction issued by a
sincere node would increase linearly and assume that the value
is w. Under the same conditions, all the n transactions issued
by a malicious node would inevitably have different cumulative
weights that are dependent on each anothers transactions. In
order to hide its malicious intent, a node must approve its
own transactionand not by a node of the main tangle. In this
case, the cumulative weight of the first issued transaction is
w, the cumulative weight of the following transactions would
be bound to w − 1, w − 2, w − 3, ....

V. EMPIRICAL STUDY

In order to evaluate the stability of the system for each
method, we performed simulation studies where λ is 20 or 50,
and the number of iteration is 1000, and 3000, respectively.
Figure 1 shows that the cumulative weight increases with
the slope of the lambda without any difference for each
methodology. Figure 1 also confirmed that each methodology
reliably increases the cumulative weight of any transaction
under the usual circumstance, and that the slope depends on the
volume of transactions issued on average per unit time. There
exists a remarkable difference in average cumulative weight
between the empirical result and original paper [1]. While [1]
have mentioned that there is an adaptation period in which a
cumulative weight is exponentially increased, this simulation
study confirms that the cumulative weight is linearly increased
according to the number of iterations.

Results of the simulation shows that the number of tips of
each methodology is concentrated around a λ for each method-
ology, which is slightly different from the [1]’s assumption
the number of tips remains roughly stationary in time and in
concentrated around a number L0 = 2λh. We have also found
that the number of tips of the proposed algorithm achieves
roughly stationary in time around the λ as in other algorithms.
Figure 2 presents the number of tips according to λ.

Figure 3 shows the elapsed time of each iteration for
the MCMC and proposed algorithm, respectively. Unlike the
MCMC algorithm of extracting particles from the main tangle
and performing MCMC simulations, the proposed method
considers only the subtangle calculated at each time step, so
that the elapsed time of each step is shorter than the MCMC
algorithm.

VI. DISCUSSION

The proposed and MCMC algorithms have the same princi-
ple to prevent malicious node attacks. Both methods attempt to



Fig. 1. Cumulative weights according to λ with random selection algorithm

Fig. 2. Cumulative weights according to λ with random selection algorithm

minimize the probability of attack by reducing the probability
that a malicious node is selected as a tip. Therefore, the
proposed algorithm is also resistant to possible attack scenarios
for the same reaons discussed in [1].

Major difference between the two algorithms is revealed
in the way to determine whether a node is malicious. Two
algorithms consider the different criteria to determine whether
a node is malicious. In particular, the proposed methodology
evaluates the probability the node is malicious based on the
sudden increase or decrease in the cumulative weight of any
node, that is, the large variability of the cumulative weight.
Given the fact that many types of network attacks are made
through the sudden appearance of specific parasite subtangle,

Fig. 3. Cumulative weights according to λ with random selection algorithm

the proposed algorithm attempts to give a penalty by using
Bayesian inference for the sudden volatility of cumulative
weight over time. For instance, if a paracite subtangle appears
and disappears between consecutive states, the probability of
selecting that node as a tip will decrease exponentially by the
proposed algorithm in the previous section.

The main advantage of the proposed methodology is that it
is light and efficient. Each node is supposed to keep only the
own subtangle at each time step and the advanced posterior (or
prior) information according to the time. To issue a transaction,
each node needs to refer the information of subtangle to
confirm the validity of the transactions directly or indirectly
approved by the selected tips. In other words, the information
of subtangle is essential for every time step, irrespective
of the proposed algorithm. Thus, the proposed algorithm is
expected to help mitigate the problem of centralization issues
by ”coordinatiors” present in the tangle because the proposed
algorithm is very light and efficient to utilize information. At
the same time, the proposed algorithm protects against possible
attacks with the same principle as MCMC algorithm.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have experimentally confirmed that a
lightweight and efficient tip selection algorithm has the same
safety as the existing MCMC algorithm in tangles and enables
faster tip selection. There are other important branches to
support the strengths of the proposed method as a future
work. An empirical simulation study involving malicious nodes
will be able to investigate the response patterns of each
algorithm in an abnormal situation and expand the related
discussion. The theoretical support based on the Markov chain
and Bayes’ rules will also strengthen the argument of the
proposed methodology.
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