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Abstract

The productivity of skilled labor is subjected to aggregate technology innovation,

implying that a firm’s usage of skilled labor determines its exposure to the shock. I find

that profits are more sensitive to technology shocks in firms depend more on skilled

worker. Combined with the positive price of technology risk, high skill firms exhibit

higher expected returns than low skill firms. The results highlight the importance of

labor characteristics on asset prices.
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1 Introduction

Investment-specific technology shock has known to be an important factor in explaining

aggregate productivity and economic growth (Greenwood et al. (1997, 2000), Fisher

(2006)). Since positive investment-specific technology shock is associated with relative

decline in investment costs, Papanikolaou (2011) and Kogan and Papanikolaou (2013,

2014) show that technology shock is a priced risk factor that explain time-series and

cross-sectional return predictability in asset prices.

The advance in technology is also associated with the demand of labor forces. Technol-

ogy change has been skill-biased in that the productivity of skilled workers has increased

more rapidly than that of less skilled workers. Much attention has given to the techno-

logical change due to its ability to explain several phenomena in labor market, such as

increasing skill premium, rising inequality, and job polarization (Krusell et al. (2000),

Acemoglu (2002), Parker and Vissing-Jorgensen (2010), Autor and Dorn (2013)).

In this study, I examine the role of technology shock on asset prices through the labor

channel. Following the labor economics literature, I postulate that the firm production

depends on two labor groups (skilled and unskilled workers) and two aggregate shocks

(productivity and technology shocks). In this setup, technology innovation involves

changes in the productivity of skilled labor only. If firms are operated solely by skilled

workers, those firms will be totally exposed to technology shock. On the other hand,

firms will be totally isolated from the technology change if they are run by unskilled

workers. This simple relation between technology shock and labor composition raises rich

implications for firm risk profile.

Using the quality-adjusted price of capital goods relative to consumption goods pro-

posed by Greenwood et al. (1997) as proxy for technology innovation, I start by investi-

gating the dynamics of firm profits alongside technology innovation. Through firm-level

panel regression, I find that high skill firms tend to have higher profitability when positive

shock arrives, compared to low skill firms. The result implies an skill-induced operating

leverage effect that amplifies firms’ exposure to systematic risk. Therefore, if technology

shock carries a negative risk premia as in Papanikolaou (2011), high skill firms should
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have lower expected returns than low skill firms in the cross-section.

Regarding the price of technology risk, there is a debate on the sign of technology risk

premia. Li (2014) and Garlappi and Song (2016) propose a positive risk price of technology

shock, as opposed to Papanikolaou (2011) and Kogan and Papanikolaou (2013, 2014).1

Due to the debate in the literature, I conduct cross-sectional tests to identify the sign of

risk price in my sample. First, I calculate individual stock’s technology beta, and form

portfolios based on it. I also implement Fama-MacBeth cross-sectional regressions with a

broad set of test portfolios to directly infer the price of risk. In all, my estimation results

indicate a positive technology risk premia at least within my sample.

This suggests that investors demand higher expected stock returns for holding high

skill stocks relative to low skill stocks. Consistent with the prediction, I find that high

skill firms exhibit higher returns in the cross-section. The average equal-weighted skill

spread measured by Fama-French five factor model is 0.75% monthly. However, the same

skill spread becomes 0.47% when technology factor is included to obtain alphas, implying

that a signification portion of the skill premia is subsumed by technology factor alone. I

find similar or even stronger result when Q-factor model (from Hou et al. (2015)) is used.

An increasing pattern of technology beta across portfolios further supports the intuition.

This study mostly contributes to recent advances in asset pricing with labor market.

In the literature, only few studies highlight the importance of labor skills. Ochoa (2013)

shows that high skill firm are risky due to their exposure to volatility shock. Because skilled

labor is costly to adjust, investors demand high returns for high skill firms, especially in

highly volatile states. In a neoclassical investment-based model framework, Belo et al.

(2016) focuses on the negative hiring-return relation in the cross-section, that is steeper for

high skill firms. Both studies rely on the costly adjustment nature of skilled labor, where

my findings are based on the relation between labor productivity and economic-wide risk

fundamentals.

This study also adds to the literature on the technology innovation as a risk factor.

Christiano and Fisher (2003) first relates technology shock to equity premium at aggregate

1According to Garlappi and Song (2016), the sign of technology risk price is sensitive to test assets and
sample periods used.
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level. Papanikolaou (2011) and Kogan and Papanikolaou (2013, 2014) further document

that technology shock drives cross-sectional heterogeneity in asset prices, by linking

risk exposure to various firm-level characteristics. The main driver of their results is

the negative technology risk premia. On the other hand, Li (2014) propose a unified

framework that explain the value and momentum strategies simultaneously, suggesting

that positive risk premia of technology shock is essential to explain the observed patterns.

Garlappi and Song (2016) further examine the role of technology shock in the value

and momentum strategies, and estimate positive risk premia using a broad sample data.

Through the labor channel, I find a positive technology risk premia, providing supportive

evidence for the arguement of Li (2014) and Garlappi and Song (2016).

2 Hypotheses Development

To develop testable hypotheses, I consider a production technology similar to Autor et al.

(2008) where each firm produces a perishable good with two inputs, skilled labor (Ls) and

unskilled labor (Lu), and two aggregate shocks, skill-neutral productivity shock (At) and

skill-biased technology shock (Zt).

Yi,t = At
[
αi(ZtL

s
i,t)

ρ + (1−αi)(Lui,t)
ρ
] 1
ρ . (1)

αi represents the skill intensity (share of work activities allocated to skilled labor) of

firm i. In this setting, heterogeneity across firms stems from skill intensity parameter,

α. For example, if α equals to one, firm operation depends only on skilled workers and

hence will be perfectly exposed to the advances in technology. In contrast, firm will be

totally isolated from the shock when α equals to zero. This type of production implies

that skill-intensive firms should have profits that are more sensitive to the shock. At the

same time, the effect of productivity shock is skill-neutral. From this specification, it is

natural to reach the first testable hypothesis:

Hypothesis 1: Firms that require more skilled labor have profits that are more sensitive to the

technology shock, compared to low skill firms.

4



If technology innovation systematically affects firm operation, the shock should be

regarded as economic-wide risk factor. As such, it is important to examine its asset

pricing implication. If technology shock is a risk that carry a negative risk premia as

in Papanikolaou (2011), high skill firms should have lower expected stock returns. In

contrast, those firms should have higher returns if technology shock is associated with

positive risk premia as in Li (2014) and Garlappi and Song (2016). This lead to the second

testable hypothesis:

Hypothesis 2: If technology shock carries positive (negative) risk premia, then high skill firms

have higher (lower) expected stock returns.

3 Data

3.1 Measure of Labor Skill

The key variable throughout the study is the labor skill of a firm. Since it is not able

to obtain workforce details within a firm, I define labor skill measure at industry level

each year as the fraction of high skilled workers, following Belo et al. (2016). I first

classify skilled labor at occupation level using the Dictionary of Occupational Titles

(DOT): Revised Fourth Edition, 1991 from U.S. Department of Labor. DOT includes the

information on Specific Vocational Preparation (SVP), which measures the amount of

lapsed time required by a typical worker to learn the techniques, acquire the information,

and develop the facility needed for average performance in a specific job-worker situation.

The value of SVP ranges from 1 to 9, where SVP =1 corresponds to the lowest preparation,

and SVP = 9 corresponds to the highest preparation of over 10 years. I define a high skill

occupation if its SVP index is equal to or greater than 7 (this corresponds to an occupation

that requires over 2 years of preparation), and low skill otherwise.

I then obtain industry level measure of labor skill by calculating the percentage of

skilled workers in the industry. The data on the number of workers by occupation in

each industry is from the Bureau of Labor Statistics, Occupational Employment Statistics
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(OES) program.2 I map SVP information of each occupation to OES data to obtain the skill

intensity across industries.3

[Insert Table 1]

In Table 1, I report top 5 and bottom 5 skill industries in 2010. In high skill industries,

over half of employees are skilled workers while bottom industries use less than one

percent of skilled workers among total number of employees. It is clear that there is a

heterogeneity of skill requirement across industries.

3.2 Measure of Technology Shock

In the empirical analysis, I rely on two measures of technology shocks. The first measure is

the price of new equipment relative to consumption proposed by Greenwood et al. (1997,

2000), which is obtained from macroeconomic data. Krusell et al. (2000) interpret this

measure as skill-biased technological change and find that it explains most of variation in

skill premium. Following Garlappi and Song (2016), I proxy the technology shock as the

innovation in quality-adjusted equipment price relative to consumption:

T echt = −(ln(PI /PC)t − ln(PI /PC)t−1), (2)

PI denotes the price of equipment, and PC is the price deflator for nondurable consumption

goods from the National Income and Product Accounts (NIPA) tables.4

The second measure of technology shock is from Papanikolaou (2011), which is ob-

tained from financial data. It is the stock return spread between investment and consump-

tion good producers,

IMCt = rIt − rCt . (3)

For the classification between investment and consumption producers, I follow Gomes

et al. (2009) which classify industries into investment and consumption sectors based on

2Before 1996, the OES provides employment data once in three years. Therefore, I use the same industry
data for three consecutive years to ensure continuous coverage of the full set of industries in early years.

3From 1991 to 2001, I calculate industry skill at 3-digit SIC level and 4-digit NAICS level onwards.
4I thank Ryan Israelsen for sharing the quality-adjusted equipment price series used in Israelsen (2010).

6



the contribution to the final demand category in National Income and Product Accounts

(NIPA).

This specification assumes that firms producing investment goods have different load-

ings on the technology shock compared to consumption producers, while both firms have

same loadings on the productivity shock. The return difference between investment and

consumption firms can be an appropriate measure for technology shock, neutralizing the

effect of productivity shock. The advantage of this measure is that it can be measured at

monthly or even higher frequency, where the price series in (2) is calculated on annual

basis.

4 Empirical Findings

4.1 Sample & Summary Statistics

I construct sample from the intersection of CRSP and Compustat database that span from

1991 to 2012. I exclude financial and utility firms due to their regulatory environment. To

avoid results driven by microcap firms discussed in Fama and French (2008), I exclude

firms in the lowest 20th size quantile for each year. I keep track of following variables.

Size is the firm market capitalization; BM is the book-to-market ratio; Inv is the capital

expenditures (Compustat item CAPX) to the property, plant, and equipment (item PPENT)

ratio; Book. Lev is the total debt (item DLC+DLTT) to assets (item AT); P rof it is the gross

profits (item REVT-COGS) to assets as in Novy-Marx (2013); Cash Flow is the ratio of

income before extraordinary items (item IB) plus depreciation (item DP) to assets; Labor

Share is the number of employees (item EMP) to assets ratio; Cash is the ratio of cash and

cash equivalents (item CHE) to assets ratio.

[Insert Table 2]

In Table 2, I report the time-series average of median characteristics for quintile skill

portfolios. On average, high skill firms tend to be smaller, and have lower book-to-market

ratio than low skill firms. Moreover, high skill firms have low level of financial leverage,
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while holding more cash. To summarize, labor skill intensity is related to several firm-level

characteristics in the cross-section.

The key property of skill composition is that high skill firms have high exposure to

the technology shock. As a preliminary investigation, I directly estimate each stock’s

technology beta using IMC return as a proxy for technology shock. A stock’s monthly IMC

beta is obtained by regressing stock return on the IMC return (defined in (3)):

ri,t = ai,t + βIMCi,t + εi,t,∀i, t. (4)

I use 36 month rolling window and require stocks to have at least 24 observation in

the window. βIMC1 is stock’s IMC beta obtained from (4) and βIMC2 is obtained by adding

market risk factor to (4). As reported in 2, high skill firms show higher sensitivity to the

technology shock than low skill firms. The median IMC beta of high skill portfolio is 1.02

on average where the median beta of low skill portfolio is 0.551. I find a similar increasing

pattern for βIMC2. This pattern clearly implies that high skill firms are more exposed to

the technology shock.

4.2 Response to Technology Shock

I investigate how firms’ profits react in response to the technology shock. To test my first

hypothesis, I consider a specification of the form:

P rof iti,j,t+1 = β × Skilli,j,t +γ × Shockt+1 + δ(Skilli,j,t × Shockt+1) + ctrlsi,j,t + εi,j,t+1. (5)

I first regress logarithm of firm profit at year t+1 on lagged skill, technology shock, and

skill-shock interaction variable. I also include several controls such as firm fixed effects,

year fixed effects, industry-year fixed effects (2 digit SIC level), logarithm of firm assets,

Tobin’s Q, tangibility, book leverage, capital investment, firm cash holding, and firm age.

The standard errors are clustered at the firm and year level.

[Insert Table 3]

8



In Table 3, I report the estimation results. In column (1) where technology shock

(T ech) is the variable of interest, a one standard deviation increase in technology shock

(1.8) corresponds to 0.9% increase in profits on average. Moreover, I find that high skill

firms tend to have higher profits, when positive technology shock arrives. In column (2),

T ech*Skill is estimated as 0.014 at 1% significance level. This implies that given a typical

increase in the technology shock, a one standard deviation increase in skill (0.14) leads to a

0.2% more increase in profitability. In column (3) to (4), I further control for productivity

shock (T FP ) in the specification to examine the robustness of results.5

The results suggest that labor skill dependency amplifies firms’ exposure to the tech-

nology innovation. Firms that require high degree of labor skills have profits that are

more volatile than low skill firms, alongside with aggregate fluctuation. This implies

that technology innovation is a economic-wide risk factor, operating through firm labor

channel.

4.3 Labor Skill and the Cross-section of Stock Returns

4.3.1 Risk Price of Technology Shock

Having found that high skill firms have high exposure to the technology shock, it is impor-

tant to examine its asset pricing implications. High skill firms should have lower expected

returns if technology shock is a risk that carry negative risk premia as in Papanikolaou

(2011). However, several recent studies argue the positive risk premia for technology

shock (Li (2014), Garlappi and Song (2016)). For this reason, the discussion regarding the

sign of technology risk is essential before investigating the link between labor skill and

asset prices.

[Insert Table 4]

In Table 4, I first report equal and value-weighted portfolio alphas sorted on βIMC .

βIMC is obtained from the equation (4) after controlling for market risk factor. I use 36

month rolling window and require stocks to have at least 24 observation in the window.

5The measure of aggregate productivity (T FP , utilization adjusted productivity factor following Basu
et al. (2006)) is obtained from Federal Reserve Bank of San Francisco.
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The abnormal returns are obtained from either the Fama-French five factor model (Fama

and French (2015)) or the Q-factor model suggested by Hou et al. (2015). In all, the results

suggest that technology shock carries a positive risk premia for both results. High-minus-

low portfolio alphas are all positive and large in terms of magnitude. For example, when

returns are value-weighted, the IMC premia is 0.78% monthly when Fama-French five

factors are used to obtain alphas.

I also directly estimate the IMC risk premia through two-stage Fama-MacBeth regres-

sions. I consider a broad set of test assets, including ten size, ten book-to-market, ten

momentum, ten operating profitability, ten investment, and ten portfolios sorted on labor

skills. The usage of profitability and investment portfolios are motivated by Fama and

French (2015). I also include ten skill portfolios, since the exposure to the technology

shock is closely tied to labor skill dependency.

[Insert Table 5]

For the first-stage beta regressions, following Liu and Zhang (2008), I estimate portfolio

betas with three alternative methods: (i) full-sample window, (ii) rolling five-year win-

dows, and (iii) expanding windows. Using estimated portfolio betas, I report risk premia

estimates from the second-stage Fama-MacBeth regressions in Table 5. The t-statistics

are Newey-West adjusted with sixty month lags. Panel A shows the full-sample window

beta results. I find positive and significant IMC estimates in specifications considered.

For example, when market risk factor is added to the regression, the IMC risk premia is

0.67% per month with a t-statistic of 2.20. I also find the positive risk premia even after

controlling for Fama-French five risk factors.

In Panel B and C, I report the risk premia estimates with alternative first-stage proce-

dures. The results are qualitatively similar albeit weak in terms of significance. In both

panels, I find significant IMC risk premia only when all factors are included. Notably,

I cannot find any significance for size, book-to-market, and investment factors for all

specification considered. In all, I present supporting evidences of positive technology

premia as in Li (2014) and Garlappi and Song (2016).
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4.3.2 Cross-sectional Analysis

High skill firms are more exposed to technology shock, and hence should have higher

expected returns than low skill firms. Using measure of labor skill, I first conduct firm-

level Fama-MacBeth regression to test the prediction.

[Insert Table 6]

In Table 6, I report estimation results. The variable of interest is Skill, which indicates

skill intensity measured at industry-level. I also include several characteristics that are

known to predict stock returns such as firm size (size), logarithm of book-to-market

ratio (BM), past 11 month stock return momentum (RE12,2), past 1 month lagged stock

return (RE1 ), capital investment (Inv), labor hiring (Hire) as in Belo et al. (2014), operating

leverage (Op.Lev), and book leverage (Book. Lev). I find Skill to be positive and significant

in most cases. For example, a one standard deviation increase in labor skill is associated

with 0.25% increase in monthly returns, when all control variables are added. Clearly,

high skill firms have subsequent high returns.

[Insert Table 7]

I also sort firms according to labor skill and form quintile portfolios. In Table 7, I

report value-weighted portfolio alphas sort on labor skill measure. Consistent with Fama-

MacBeth results, I confirm the existence of skill premia in the cross-section. For example,

high-minus-low five factor alphas are 0.73% monthly.

More importantly, I find that a significant portion of skill premia can be explained

by adding technology factor in the specification. When portfolio alphas are obtained

by adding IMC returns to Fama-French five factors, I find relatively smaller and less

significant high-minus-low alphas (0.46%). The decrease in alpha is more pronounced

when Q-factor model is employed. For example, high-minus-low alphas has decreased

almost by half to 0.32% monthly, which is statistically insignificant. Finally, I report IMC

factor loadings in Table 7 in last row each panel. Regardless of factor model used, there is

a increasing pattern of IMC loadings across skill portfolios. Overall, the results show that
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a significant portion of skill premia is explained by firms’ exposure to technology risk, as

predicted.

5 Conclusion

This study provides implication of technology innovation for firm behavior and asset

prices, through the labor skill channel. Consistent with the intuition, I find that high skill

firms have higher profitability when positive technology shock arrives, suggesting that

high skill firms are more exposed to the shock.

It is still in debate as to the sign of technology risk factor. Contrary to the findings in

Papanikolaou (2011), I find positive price of technology risk. This leads to high skill firms

to have higher subsequent returns. Overall, my findings imply that labor skill mix is an

important characteristic, that determine exposure to economic-wide shocks.
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Table 1: Industry Skill Rankings in 2010
This table presents the top 5 and bottom 5 industries sorted on labor skill measure in 2010. Industry-level
labor skill measure is calculated as the proportion of skilled workers in each industry. The number of skilled
workers are from the number of workers in occupations that have a Specific Vocational Preparation (SVP)
value greater or equal to 7. Labor skill measure is defined at 4-digit NAICS level.

Y ear NAICS Skill Description

2010 5112 65.7% Software Publishers

2010 5232 61.0% Securities and Commodity Exchanges

2010 3341 60.0% Computer and Peripheral Equipment Manufacturing

2010 5417 58.4% Scientific Research and Development Services

2010 5415 58.2% Computer Systems Design and Related Services
...

...
...

...

2010 8121 0.9% Personal Care Services

2010 4854 0.8% School and Employee Bus Transportation

2010 4852 0.8% Interurban and Rural Bus Transportation

2010 7221 0.7% Full-Service Restaurants

2010 7222 0.5% Limited-Service Eating Places
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Table 2: Skill Portfolio Characteristics
This table reports time-series averages of median portfolio characteristics of the quintile portfolios sorted
on the labor skill measure. Based on information available at the end of the previous years, in June of each
year, I sort stocks into five portfolios using the skill measure. Skill is the labor skill measure; Size is the
log market value of equity; BM is the book-to-market ratio; Inv is the capital expenditures to property,
plant, and equipment ratio; Leverage is the total debt to assets; P rof it is the gross profitability following
Novy-Marx (2013); Cash Flow is the earnings before extraordinary items plus depreciation to assets; Labor
Share is the number of employees divided by assets; Cash is the ratio of cash and cash equivalent to assets.
βIMC1 is the stock’s IMC beta obtained from the equation 3. βIMC2 and βMKT 2 are the stock’s IMC beta and
market beta obtained by adding market risk factor to the equation 3. To estimate betas, I use 36 month
rolling window and require stocks to have at least 24 observation in the window. The sample period is from
1991 through 2012.

L 2 3 4 H

Skill 0.037 0.102 0.172 0.261 0.417

Size 5.335 5.381 5.208 5.131 4.972

BM 0.624 0.595 0.523 0.433 0.448

Inv 0.054 0.040 0.036 0.037 0.036

Book. Lev 0.230 0.229 0.182 0.097 0.065

P rof it 0.401 0.333 0.278 0.292 0.365

Cash Flow 0.089 0.078 0.059 0.047 0.055

Labor Share 0.011 0.006 0.004 0.004 0.005

Cash 0.055 0.062 0.093 0.248 0.239

βIMC1 0.551 0.686 0.778 1.016 1.020

βIMC2 0.068 0.168 0.320 0.503 0.508

βMKT 0.956 0.982 0.947 1.050 1.041
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Table 3: Response of Profit to Aggregate Shocks
This table shows the response of firm profit to technology shock for firms in different skill industry. The
dependent variable is the gross profitability following Novy-Marx (2013). To proxy for technology shock
(T ech), I use the innovation in quality-adjusted equipment price relative to consumption. T FP is the
aggregate productivity shock following Basu et al. (2006). Skill is the labor skill measure. The controls used
in the specification are logarithm of firm assets, Tobin’s Q, tangibility, book leverage, capital investment,
firm cash holding, and firm age. Tobin’s Q is define as the ratio of market value of assets (market value of
equity, plus total debt, plus preferred stocks, minus deferred taxes and investment tax credit) to book assets.
Tangibility is the ratio of plant, property and equipment to assets. Book leverage is defined as the ratio of
total debt to assets. Capital investment is the capital expenditures to property, plant, and equipment ratio.
Firm cash holding is the ratio of cash and cash equivalents to assets. Firm age is the number of years the
firms appears on the data. The sample period is from 1991 through 2012. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% levels, respectively. The numbers in parentheses are t-statistics clustered
at the firm and year level.

(1) (2) (3) (4)

T ech 0.005** 0.004**
(2.24) (2.18)

T ech*Skill 0.014*** 0.016**
(5.59) (2.15)

T FP -0.002
(-0.96)

T FP *Skill 0.007
(0.39)

Skill -0.118 -0.135
(-1.26) (-1.16)

Control Y Y Y Y
Firm FE Y Y Y Y
Year FE N Y N Y

Ind*Year FE Y Y Y Y
Obs 51,592 51,592 51,592 51,592
R2 78.1% 78.1% 78.1% 78.1%
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Table 4: Quintile IMC Beta Portfolio
This table provides average monthly alphas for quintile portfolios sorted on the IMC beta. The IMC beta is
obtained by adding market risk factor to the equation 3. To estimate beta, I use 36 month rolling window
and require stocks to have at least 24 observation in the window. I report equal-weighted alphas (Panel A)
and value-weighted alphas (Panel B). Alphas are estimated either from the Fama-French five factor model
(Five factors α) or from the Q-factor model (HXZ α). The sample period is from 1991 through 2012. *, **,
and *** for the High-Low portfolio alphas denote statistical significance at the 10%, 5%, and 1% levels,
respectively. The numbers in parentheses are t-statistics based on White (1980) robust standard errors.

L 2 3 4 H High-Low

Panel A: Equal-Weighted Returns

Five factors α 0.17 0.13 0.28 0.52 0.70 0.52**

(1.08) (1.05) (2.08) (2.40) (2.17) (2.04)

HXZ α 0.32 0.26 0.43 0.79 1.07 0.75**

(1.78) (1.68) (2.68) (3.20) (3.08) (2.52)

Panel B: Value-Weighted Returns

Five factors α -0.08 -0.13 0.12 0.32 0.70 0.78**

(-0.83) (-1.43) (0.86) (1.87) (2.67) (2.52)

HXZ α -0.02 -0.13 0.21 0.51 0.78 0.80**

(-0.21) (-1.28) (1.23) (2.75) (2.46) (2.13)
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Table 5: Risk Premia Estimates
This table reports the estimated IMC risk premia from Fama-MacBeth cross-sectional regressions. The
test portfolios are: size deciles, book-to-market deciles, momentum deciles, investment deciles, operating
profitability deciles, and skill deciles. I consider both a two-factor model (MKT+IMC) and a six-factor model
(FF5+IMC). I employ three methods in the first-stage beta estimation: (1) full-sample window (Panel A); (2)
rolling window (Panel B); and (3) extending window (Panel C). The rolling window uses a 5-year moving
window. The sample period is from 1991 through 2012. *, **, and *** denote statistical significance at the
10%, 5%, and 1% levels, respectively. The numbers in parentheses are t-statistics based on Newey-West
adjusted with a lag of 5 years.

γ0 MKT IMC SMB HML UMD RMW CMA R2

Panel A: Full-Sample Window in the First-Stage Regression

MKT+IMC 1.545*** -1.276** 0.670** 20.7%

(3.51) (-2.41) (2.20)

FF5+IMC 0.855*** -0.289 1.260*** 0.394 0.214 0.641* 0.738** 0.100 50.2%

(3.82) (-0.74) (4.14) (1.20) (0.58) (1.92) (2.38) (0.31)

Panel B: Rolling Windows in the First-Stage Regression

MKT+IMC 0.961*** -0.592 0.451 20.9%

(3.42) (-1.28) (1.30)

FF5+IMC 0.670*** 0.066 0.559** 0.579 0.131 0.921** 0.243 0.240 47.2%

(3.45) (0.15) (2.13) (1.13) (0.38) (2.21) (0.44) (0.65)

Panel C: Extending Windows in the First-Stage Regression

MKT+IMC 0.988** -0.454 0.133 18.8%

(2.04) (-0.72) (0.36)

FF5+IMC 0.566** 0.256 0.847*** 0.583 -0.011 0.778** 0.681* 0.230 46.5%

(2.47) (0.88) (3.15) (1.36) (-0.03) (2.32) (1.97) (0.73)
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Table 6: Fama-MacBeth Regression
This table provides the second stage Fama-MacBeth regressions of monthly excess stock returns on the labor
skill (Skill) along with a set of controls. Skill is the labor skill measure; Size is log market capitalization;
BM is the log book-to-market ratio; RE2,12 is the past 12 month stock return skipping the most recent month;
RE1 is the past 1 month stock return; Inv is the capital expenditures to assets ratio; Hire is the change in
number of employees divided by lagged number of employees; Op. Lev is the sum of cost of goods sold and
selling, general and administrative expenditures, divided by sales; Book. Lev is the total book debt divided
by the sum of market value of equity and total book debt. The sample period is from 1991 through 2012.
*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. The numbers in
parentheses are t-statistics based on the White (1980) standard errors.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Skill 1.675* 1.562 2.167** 1.640* 1.731* 1.638* 1.821* 1.828** 1.493* 1.767***
(1.72) (1.61) (2.50) (1.94) (1.96) (1.69) (1.95) (2.00) (1.72) (2.79)

Size -0.153** -0.099
(-2.14) (-1.64)

BM 0.436*** 0.268***
(5.14) (3.48)

RE12,2 0.001 0.002
(0.52) (0.93)

RE1 -0.032*** -0.035***
(-4.21) (-5.69)

Inv -1.388* -0.313
(-1.69) (-0.36)

Hire -0.848*** -0.617***
(-6.13) (-4.95)

Op. Lev -0.211* -0.231**
(-1.66) (-2.23)

Book. Lev 0.008 -0.037
(0.19) (-1.16)

R2 0.69% 1.60% 1.20% 1.61% 1.51% 0.91% 0.94% 1.30% 0.87% 4.67%
Obs 896,457 896,357 822,589 885,908 896,297 878,889 846,731 803,346 752,126 578,061
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Table 7: Quintile Skill Portfolio
This table provides average value-weighted monthly alphas and IMC factor loadings for quintile portfolios
sorted on the labor skill. Alphas are estimated either from the Fama-French five factor model (Panel A) or
from the Q-factor model (Panel B). For each panel, I also report portfolio alphas and IMC factor loadings,
both obtained from adding IMC factor to the original model considered. The sample period is from 1991
through 2012. *, **, and *** for the High-Low portfolio alphas denote statistical significance at the 10%,
5%, and 1% levels, respectively. The numbers in parentheses are t-statistics based on White (1980) robust
standard errors.

L 2 3 4 H High-Low

Panel A: Fama-French Five Factors

Five factors α -0.27 -0.10 -0.18 0.32 0.45 0.73***

(-2.18) (-0.97) (-1.29) (2.51) (2.74) (3.22)

Five+IMC α -0.19 -0.09 -0.19 0.22 0.27 0.46**

(-1.57) (-0.83) (-1.35) (1.84) (1.93) (2.46)

IMC Loading -0.22 -0.04 0.03 0.23 0.45 0.67***

(-4.93) (-1.05) (0.44) (4.52) (8.92) (10.45)

Panel B: HXZ Q-Factors

HXZ α -0.15 -0.12 -0.08 0.29 0.55 0.70**

(-0.89) (-1.05) (-0.55) (2.07) (3.07) (2.56)

HXZ+IMC α 0.01 -0.06 -0.07 0.14 0.33 0.32

(0.05) (-0.51) (-0.44) (1.11) (2.23) (1.54)

IMC Loading -0.34 -0.13 -0.03 0.31 0.48 0.81***

(-7.24) (-3.39) (-0.56) (5.88) (10.88) (12.97)
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